一般講演

講演要旨

22 日 (土) 9 : 10∽10 : 58 13 : 20∽16 : 20

A会場:2211 講義室 B会場:2212 講義室 C会場:2213 講義室 D会場:2214 講義室 E会場:2224 講義室

	ヘッドスペース-マイクロ固相抽 -GC/MS 法によるフウラン花の放出 る香気成分の解析		GC/MS 分析と感覚評価によるハーブの 香りの解析とホエー飲料への応用
A-1	種田明子 ¹ 、〇森山寛子 ² 、根岸晴夫 (¹ 中部大 植物バイオ研究センター ² 中部大 応用生物学部)	-, A-3	〇呂鋒1、種田明子2、根岸晴夫1,2 (1 中部大 応用生物学部、2 中部大 植物 バイオ研究センター)
【目的】フウラ らんれて了したで、き りんてて了した たして す か た た し た か よ た し た か よ た っ た い た か た か に 、 き し を 花 ら っ て り を 花 ら っ た か た か た か た か た か た か た か た か た か た	シ(Neofinetia falcata)は、日本に自生す から盛んに美しい突然変異株が選択栽 また、開花時に強い芳香を放つことで人 た。これまでに、ガラス容器を花に被せ 集剤に吸着させ分析した例 ¹⁾ 、バイヤル ヘッドススペースの香気成分を分析した 出した精油を分析した例 ³⁾ などが見られる ランの生花が自然に発散する香りを分 間の差異を比較した。 大場ラン園から入手した 8 系統及び豊 、手した 5 系統、計 11 系統の N. falcata 法の花茎から上部を樹脂製の袋で覆い 抽出ファイバー(Polydimethylsiloxane/ me)を挿入して 26±1℃、2 時間放置し ーに吸着した成分を GC/MS に導入して ながした。 気成分を解析した結果 Methyl Tiglata 1-ol、Benzaldehyde、Linalool、Methyl urnesene、Benzyl alcohol などが観察さ N. falcata の香気成分としてすでに報告 であった。未同定成分については、今 5。また、系統間の香気成分パターンに した。	る培々香に例。析明に、たい、れさ後差の 「一日の一方で、たい、れた、これで後差の 「一日の一方で、たい、れた、これで後差の 「一日の一方で、 「」」 「一一一方で、 「一一一方で、 「一一一一方で、 「一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一	ブ6種類の生葉の香りの特徴を感覚評価と fiによって検討し、ハーブの香りの良し悪し 香気物質について解析を行った。さらにハ と生かした飲料として、チーズ副産物のホエ でを利用した飲料の開発を試みた。 ブはレモンバーベナ、レモンユーカリ、フル 、ローズ・ゼラニウム、赤、および青紫蘇を 分析試料はバイアル瓶に生葉入れてキャ 後、インキュベーターで培養した。香気物質 マイクロ固相抽出法を用いて、GC/MS分析 うの感覚評価は2段階アンケート調査によ りの感覚評価は2段階アンケート調査によ 「つてた。ホエータンパク質は rotein isolate)を用いた。 種類のハーブ生葉が放出する香気物質を 同定し、香気プロファイルを作成した。レモン とフルーツ・セージの香りが好まれ、α Pinene、Limonene などが芳香に寄与して いれた。ローズ・ゼラニクムが嫌われたのは、 e、Isomenthone、Citronellol などが影響し、 っ因になっていると考えられた。これらのハ て赤、青紫蘇の香気は弱く、HS 法では検 十分なためマイクロ固相抽出法で測定中。 りがするホエー飲料の開発では、飲料とし ハーブと抽出方法を検討中である。レモン フルーツ・セージ、赤、青紫蘇が好まれた。 香りと飲料から検出された香気物質との関 次料の品質設計上の問題点について考察
	ナスの皮に含まれるヒト白血病細胞 殖抑制物質	増	ニセアカシアに含まれるシアナミド
A-2	 	今 A-4	〇遠藤舞 ¹ 、加茂綱嗣 ¹ 、山谷紘子 ² 、平 舘俊太郎 ² 、藤井義晴 ² 、廣田満 ¹ (¹ 信大 農、 ² 農環研)
【目的】ナス() 日本の3つでかる 価値にかるでかる るでいる。されたい が助ナスの。 が助けるの皮し、 があったり たり たり たり たい たい たい たい たい たい たい たい たい たい たい たい たい	ナス科ナス属 solanum melongena L.)に において日常的に食される馴染み深い る。その大半は水分であり一般に栄養 とされている。しかし一方で、ナスに含ま ニンが高い抗酸化能を持つことが報告さ こ、近年、アントシアニンにガン予防の効 こいる。そこで今回は、アントシアニンを ことト白血病細胞増殖抑制物質を見出す て研究を開始した。	 【目的】シャアカン た、食的れれ マガスにある マガスにある シジュストの シジェストの シジュストの シジェストの シジェストの<!--</td--><td>ナミド(NH₂CN)は天然には存在しないと考 cが,近年ソラマメ属のヘアリーベッチ(Vicia p. varia)から単離された。高等植物 452 種 に行ったシアナミド分布調査の結果から、 ソラマメ属のクサフジ(V. cracca)とハリエン zアカシア(Robinia pseudo-acacia)にも含ま :が明らかになった。シアナミドの過剰摂取 肝機能障害、急性アルコール中毒を引き 予県内ではニセアカシアの花が食材として いるため、本研究ではニセアカシアの花の</td>	ナミド(NH ₂ CN)は天然には存在しないと考 cが,近年ソラマメ属のヘアリーベッチ(Vicia p. varia)から単離された。高等植物 452 種 に行ったシアナミド分布調査の結果から、 ソラマメ属のクサフジ(V. cracca)とハリエン zアカシア(Robinia pseudo-acacia)にも含ま :が明らかになった。シアナミドの過剰摂取 肝機能障害、急性アルコール中毒を引き 予県内ではニセアカシアの花が食材として いるため、本研究ではニセアカシアの花の

A-5	Streptomyces sp. USF る DPPH ラジカル捕 (第2報)新規 2-pyron	-6280 株の生産す E物質 e 化合物の単離		<u>\</u> -7	K⁺選択的イオノフォア機能解析のためのフォトプローブ分子設計
	○渡辺 圭, 大家昭→ 廣田 陽 (静岡県立)	←, 杉山靖止, 大•食品栄養)			O天石亜矢子、Arthit Makarasen、 久世雅樹*、磯部 稔 (名大院生命農学 *名大物質国際セ)
【目的】 <i>Streptomyces</i> (1,1-dipheny 産す(3-(2,5-dihyc (germicidin) 本性を的とよい。 本性を的法で、 4のたチルリカカム LH-20カイン 加大学 レH-20カイン 4のたん、 5、 phomapyrone methylpropyl 化の のであって、 4の の の た 4の の の た 4の の た の の た 本 4 の の た た の の た の の た の の た の の た の の の た の の の た の の の た の の の た の の の の た の の の の た の の の た の の の た の の の た の の の の の た の の の た の の の の た の の の た の の の た の の の た の の の た の の の の の の た の の の の の の の の の の の の の	毎 岡 市 駿 河 区 の 土 sp. USF-6280 株に l-2-picrylhydrazyl)ラジ 年度大会において、 dro-2-oxofuran-4-yl) pr B)の単離、化学構造に SF-6280 株が生産する f規 2-pyrone 化合物の る。 果】USF-6280 株をベジ 振盪培養した。培養終 を塩酸で pH3 に調整 はし、中酸性画分を得た ($n-\Lambda+ + \nu$) / 酢酸 ($y = 2 - \nu$) / 酢酸 ($n = 2 - \nu$) / $n = 2 - \nu$ ($n = 2 - \nu$) / $n = 2 - \nu$ ($n = 2 - \nu$) / $n = 2 - \nu$ ($n = 2 - \nu$) / $n = 2 - \nu$ ($n = 2 - \nu$) / $n = 2 - \nu$ ($n = 2 - \nu$) / $n = 2 - \nu$ ($n = 2 - \nu$) / $n = 2 - \nu$ ($n = 2 - \nu$) / $n = 2 - \nu$ ($n = 2 - \nu$) / $n = 2 - \nu$ ($n = 2 - \nu$) / $n = 2 - \nu$ ($n = 2 - \nu$) / $n = 2 - \nu$ ($n = 2 - \nu$) / $n = 2 - \nu$ ($n = 2 - \nu$) / $n = 2 - \nu$) / $n = 2 - \nu$ ($n = 2 - \nu$) / $n = 2 - \nu$ ($n = 2 - \nu$) / $n = 2 - \nu$) / $n = 2 - \nu$ ($n = 2 - \nu$) / $n = 2 - \nu$) / $n = 2 - \nu$ ($n = 2 - \nu$) / $n = 2 - \nu$) / $n = 2 - \nu$ ($n = 2 - \nu$) / $n = 2 - \nu$) / $n = 2 - \nu$ ($n = 2 - \nu$) / $n = 2 - \nu$) / $n = 2 - \nu$ ($n = 2 - \nu$) / $n = 2 - \nu$) / $n = 2 - \nu$ ($n = 2 - \nu$) / $n = 2 - \nu$) / $n = 2 - \nu$ ($n = 2 - \nu$) / $n = 2 - \nu$) / $n = 2 - \nu$ ($n = 2 - \nu$) / $n = 2 - \nu$) / $n = 2 - \nu$ ($n = 2 - \nu$) / $n = 2 - \nu$) / $n = 2 - \nu$ ($n = 2 - \nu$) / $n = 2 - \nu$) / $n = 2 - \nu$ ($n = 2 - \nu$) / $n = 2 - \nu$) / $n = 2 - \nu$ ($n = 2 - \nu$) / $n = 2 - \nu$) / $n = 2 - \nu$) / $n = 2 - \nu$ ($n = 2 - \nu$) / $n = 2 - \nu$) / $n = 2 - \nu$) / $n = 2 - \nu$ ($n = 2 - \nu$) / $n = 2 - \nu$) / $n = 2 - \nu$) / $n = 2 - \nu$ ($n = 2 - \nu$) / $n = 2 - \nu$) / $n = 2 - \nu$) / $n = 2 - \nu$ ($n = 2 - \nu$) /	壊より分離した 複数の DPPH カル捕捉物質を生 1 (germicidin)、2 opinoic acid)、3 こついて報告した。 DPPH ラジカル活 単離、構造解析を ネット培通して得ら した。その後、酢酸 いる過して得ら した。その後、酢酸 テフィー、続いて逆 いを用いて精製し、 (49.1 mg)、5 (5.3 分子式は C ₉ H ₁₂ O ₃ 分子式は C ₉ H ₁₂ O ₃ ころい不構板したところ、 3-methyl-6-(1- った。6も2-pyrone 遅析を行っている。 50値 4260 μ M (0.5	【チのい持セドセて【モしウでンげ成ホし体高ンLL単的に錯るついにレ検決デたリアシキ、がル、室が温キー離	」で体我アワ塩ワリ討とル既とずべ国足ム温形のすし、「「「「「「「「」」ではアリオとル既とずべ国足ム温形のすい」で、形々モと官とる結合に錯なーにさらにさ℃ーロというがは二錯能デと】物報体錯す反れ重反れ、	毒素セレウリドは、36 員環環状デプシペス カリウムイオンやアンモニウムイオンと1対 支する選択的なイオノフォア活性を有して、 この特性に注目し、セレウリドに親和性後、 ウム基とアジド基を含む化合物を合成し、 皆体を形成させた後、光照射によりセレウ と基を導入することを目的とした。そこで、 ジド化合物の錯体を形成する条件につい ととした。 】まず、ヒドロキシルアンモニウム基を含む 物を用いて複合体形成について条件検討 告されているアルキルアンモニウムとセレ 本形成の条件を参考にし、酸を加えるこ、 皆体形成を NMR により確認した。さらに、 する温度を室温から 50 ℃まで徐々に」 ほジクロロエタンに変え、80 ℃で一晩加索 してから NMR 測定したところ、50%程度象 してから NMR 測定したところ、50%程度象
A-6	 新規脱皮ホルモンア 向けたジベンゾイル 造展開 ○ 増本覚、原田俊³ 中川好秋、宮川 	ゴニストの創製に ニドラジンからの構 を、小倉岳彦、 亘	A	\-8	ジフルオロデヒドロセレンテラジンを用いたトビイカ短寿命発光中間体に関する立体過程 〇中島陽介、久世雅樹*、磯部 稔
【目的】昆クダレマのでかとす方という。 すって成胞度を し、 の の の の な し た の の な し た の の な の な た し た の な の な た の な の な た し た の な の な た し た の な の な た し た の な の た の な の た た の な の な っ っ た で た の な の た た 、 の 宿 の っ た こ た う た の た の た の た の た の た の た の た の た の た の た の た の た の た の た の た の た の た の し た の た の し た り の た の の し た の た の し た の の の た の の の の の の の の の の の の の	○脱皮,変態は脱皮ホルイソンによって制御されイソンによって制御されベルでの作用機構が詰めする脱皮ホルモンお。 ブイルビドラジン(DBH)でな、受容体にご動率的に脱皮ホルモン(DBH)では、受容体にご動率的に肥皮ホルモンの内とした。ののBHの骨格を改変最安定構造を分子力学類似性を平均二乗偏差類似性の高い化合物について、触知の「H]ponasteroneの取象から 50%効果濃度(IG 標とした。	元展字研究科) 元モンである 20-ヒドル ている。脱皮ホル 純細に調でゴニスト たびそのアゴニスト の結合様合様子 りアゴニストを た化合物を選集し たた化合物を構整し 後(RMSD)を指標と 数合成を虫およぼす の)を計算し、その の したその な な な な の た の の た の た の た の た の た の の の の た の の た の た の た の の の た の た の た の の の の た の た の た の の の の の た の た の の の の た の の の の の の の の の の の の の	【ンラ子はこ功し生【とン2,すル度い形認定体的プジ機モをした物法60 した物方2,7-4こ基のず成で構化	」ノノノ(構フ・見てジラ発と「ノノ」」へ、(構フ・見てジラ発と「ノノ」にへ発れしき造学・縄ン)サ明化しそ化性】CCという応性合合こい響い、サリアンでは、このにしてい、してい、してい、してい、してい、	(名大院生命農字、*名大物質国際セ) 毎域に生息するトビイカの発光タンパク(ミ)の活性中心を発光素子デヒドロセレンラ サイドから動的解析し、その生物発光の分 明することを目的とした。これまでに、我々 化DCLが活性中心と不可逆的に結合する し、活性中心のシステイン残基の推定に成 そこで今回、フッ素基をさらにもう一つ導力 そこで今回、フッ素基をさらにもう一つ導力 そこで今回、フッ素基をさらにもう一つ導力 化DCLを化学合成し、その化学的性質。 そこで、クローズンスティンの指定にな など、ため、この、その結果、 し、活性剤定を行った。その結果、 してた然型DCLに匹敵する発光活性を見 かとなった。一方、2,6-diF-DCLはチオー な性が高いにもかかわらず天然型の20% 生しか示さない事が分かってきた。しかし、 合物もチオール基と結合しクロモフォアを く、化学発光効率に差は生じないことも何 こで、2,4-diF-DCLと2,6-diF-DCLの多 いが、クロモフォア形成時の活性中心の気

A 10	銅触媒を用いたインダゾール誘導体の 合成	A 15	海産天然物チャルテリンの合成研究
A-13	〇 家崎泰和、谷森紳治、切畑光統(阪 府大院 生命環境科学研究科)	A-15	 展井重男、西川俊夫、磯部 稔(名 大院生命農)
【 打 抗 性 法 応 成 な を 成 誘 の 体 通 触 定 、 に 銅 鍵 法 導 化 、 な を 成 あ の 体 の 体 の 体 の 体 の に の に の に の た の の の	ゾール誘導体は、抗がん剤、抗HIV剤、 、医薬品開発上の重要な母核となる可能 後化合物群の1つである。しかしその合成 パラジウムを要したり、多段階や厳しい反 とするなど、コスト面や種々の誘導体合 ない場合も多い。そこで本研究は、安価 いた分子内ウルマン型カップリング反応 温和な条件下、簡便かつ柔軟性のある合 ったい、それを用いた新規インダゾール を行なうことにした。	【目的】Charte Chartella pap イドである。本 レニン spiro-f 繋がった大変 れまでに char 確立してきた。 けて、spiro-f 成を検討した	lline A、B、C は北海に棲息するコケムシ pyracea より単離されたインドールアルカロ に化合物は高度にハロゲン化されたインド ラクタムとイミダゾールが10員環を介して ユニークな構造を持っている。演者らはこ telline の spiro-β-ラクタム部分の構築法を ,本研究では chartelline C の全合成に向 ラクタム前駆体となる12員環ラクタムの合。
【ニン媒せの たいろで たいろで ををたいるで し したでする にさたた。 の し したで、 の し したで、 の し したで、 の し したで、 の し したで、 の したで、 の したで、 の の りの の たいの の で の したで、 の の の の の の の の の の の の の の の の の の の	加賀に2-ハロ安息香酸1を選び、塩化チオ せ酸塩化物2にした。これに各種ビドラジ 酸ビドラジド3に導いた。得られた3を銅触 子内ウルマン型カップリングにより閉環さ かとするインダゾール誘導体が31~62% れた。 $\chi_{col} \xrightarrow{H_{NNH,R}} (J_{col} (40 mol%)) \xrightarrow{R} (10 mol%)$ $\chi_{col} \xrightarrow{R} (10 mol%) $	なオキー 「方をて一方です」 「なオート」 「なオート」 「なオート」 「なオート」 「たい」 「 「たい」 「たい」 「たい」 「たい」 「たい」 「たい」 「たい」 「たい」 「たい」 「たい」 「 「 「 「 「 「 「 「 「 「 「 「 「	12 員衆ノクタムの N-CFロイシエノスト部 の窒素とカルボン酸との縮合環化反応に る計画を立てた。しかし、このような形式の 設告例がほとんどないため、簡単なモデル 反応の開発と最適化を行った。フェニルア ド由来のオキシムをモデル基質として用 テルを作用させて、オキシム窒素での縮 るかを確認した。するとオキシムをアセチ クロロメタン中で加熱すると期待した通りの こり、N-ヒドロキシエナミドが得られた。ま 酸クロリド側にインドール、オキシム側にイ それぞれ持つ場合でも進行することが分
が望まれる。			
A-14	Larock インドール合成において糖アセ チレンが示す位置選択性に関する研究 〇 杉野公美、西川俊夫、磯部 稔 (名大院 生命農)	A-16	ヤドクガエルの毒ゼテキトキシンの構造 確認を目的としたモデル化合物の合成 研究 〇澤山裕介 ¹ 、内山真伸 ² 、畑野光賞 ^{2,3} 、 古山渓行 ^{2,3} 、西川俊夫 ¹ 、磯部 稔 ¹ (¹ 名大院生命農 ² 理研 ³ 東大院薬)
【目的】1991 ヨーンドレンクロックを描述していた。 リンドーン位のした。 オロシアーンでは、 したいのののででは、 にていたいで、 にしたいでは、 にしたいでは、 にしたいでは、 にたいで、 に、 に、 に、 に、 に、 に、 に、 に、 に、 に、 に、 に、 に、	年、Larockらはパラジウム触媒存在下、o- と内部アセチレンから一挙に 2,3-二置換 含成する方法を報告した。この反応ではア の置換基のうち、よりかさ高い方がインド 入される。従来の応用例では、かさ高いシ 基を持つアセチレンを用いて位置選択性 るものがほとんどであった。そこで、より複 に用いた場合の位置選択性について検討 。 かさ高く、かつ複雑な置換基として糖を ム。 α-C-グルコシルアセチレン、α-C-マン ンをそれぞれ調製した。ヨードアニリンは 保護のヨードアニリンとマンノシルアセチ では、高い選択性でマンノースがインドー された。一方、Ts 化されたヨードアニリンと チレンとの反応では、それぞれ糖部位が 立に導入された化合物が主生成物として その選択性は低かった。 こり、糖アセチレンが示す位置選択性は糖 手することがわかった。さらに、ヨードアニリ	【目的】ゼテ zeteki より単 2004 年に山 トルを駆使して サンプルはご す ZTX 中の ル化合物症に ②グアニジン 【方法と結記和 より還元して行 NMR を測定 は量子化でいた ル化合物の合	キトキシン(ZTX)はヤドクガエル Atelopus 離された強力な神経毒であり、その構造は 下らのグループによって NMR、MS スペク て決定された ¹ 。しかし解析に用いられた く微量であったため、演者らは以下に示 2 ヶ所の部分構造について対応するモデ か成し、その構造を確認することとした。 含まれる N-アシルイソオキサゾリン構造 側鎖の N-ヒドロキシカルバメート構造 N-アシルイソオキサゾリンのモデル化合 なの方法 ² によって導かれる二環性化合物 告合を Adams 触媒による水素添加反応に 合成した。合成したモデル化合物の ¹³ C したところ、カルボニル炭素の化学シフト 十算によって予測されたものよりも低磁場 こ。また N-ヒドロキシカルバメートのモデ れ成研究ついても報告する。 M et al PN45 2004 101 4346
シ 理頬に 做得 ンの保護基が かった。	+ y ることがわかった。さらに、ヨートノニリ が位置選択性に影響を与えていることがわ	² Yamashita, I ² Blanchard, N	M. et al. PNAS 2004 , 101, 4346. J. et al. Org. Lett. 2007 , 9, 1485.

	Vibrio proteolyticus 由来 GH19 酵素遺		H⁺−ピロホスファターゼの機能的中心領
B-3	伝子のクローニンク 	B-5	域における変異体解析により同定した H ⁺ 輸送およびエネルギー共役に関わる アミノ酸産其
	(石川県大 生物資源環境学部、 *農研機構·食総研)		O広野めぐみ、中西洋一、前島正義 (名大院・生命農)
【目的】キチン β1,4 グリコシ 存在している。 多くのと、糖力 GH19)になり "Substrate as ところが、、チナ (GH19 キさす) (F19 キさす)	べは N-アセチルグルコサミン(GlcNAc)が ド結合した多糖類であり、自然界に幅広く 。キチンを分解するキチナーゼについても ら発見されており、そのアミノ酸配列の違 水分解酵素ファミリーの 18 と 19(GH18 と iされている。微生物 GH18 キチナーゼは ssisted catalysis"という基質の補助を受け と触媒していることが明らかにされてきた。 5物 GH18 キチナーゼと比較して、微生物 ーゼの反応機構に関する情報はほとんど いなかった。	【目的】 H ⁺ -ピロホスフ ドから成り、 る。PPi 加水外 モデルの大手 モデルの サート PPase (Sc って、H ⁻ -PPas を 目指した。	アターゼ (H ⁺ -PPase) は、単一ポリペプチ 5.質ピロリン酸 (PPi) の構造も単純であ 分解とそれに共役した H ⁺ の輸送について 6.考えられる。本研究では、放線菌由来の PP) を利用した網羅的な変異体解析によ se 機能のうち、特に、知見の少ない H ⁺ 輸 ルギー共役に関わるアミノ酸残基の同定
本研究では るために、Vib 遺伝子のクロ を確立する。 【方法と結ので (w19)の推行	は、GH19 キチナーゼの反応機構を解明す prio proteolyticus 由来 GH19 キチナーゼ ーニングと組み替え体酵素の大量発現系 近年、様々な Vibrio 属のゲノム配列が解 、それらの配列に存在した GH19 遺伝子 ドアミノ酸配列を参考にして保存領域をコ	【方法】 17回膜貫通 を4分作製し、 7 に存っいて、 7 になたスクリーを になる が のいて、 7 に で に のいて、 7 に に に に に に に に に に に に に に に に に に	頃域を持ち794残基から成るScPPの全長 各領域についてランダム変異導入ライブラ と。そのうち、基質結合部位を含めた高度 すつ2つのライブラリー領域(183~586) 性低下および共役効率低下を示す変異 ニングした。さらに、部位特異的変異導入 行い、活性や共役効率への影響から、機
(い) 「ドした緒重 イマーと V. vp19 遺伝子 vp19 遺伝子 TAIL(Therma vp 19 遺伝子 遺伝子の組み とした大量発	2 マライマーを設計した。設計した縮重プラ proteolyticus のゲノムを鋳型に用いて、 断片を PCR 法により増幅した。得られた 子 断 片 の 塩 基 配 列 を 基 に し て、 l asymmetric interlaced)-PCR法を用いて ・全長の塩基配列を決定した。現在、vp 19 ↓替え体酵素を得るために、大腸菌を宿主 現系を構築している。	能欠重を同足 「シダム変異」 ランダム変異 の の の で ネた。2 の が 上 メイ の の で ネた、 の 本 の た の 本 た の 本 た の た の た の た の の の の し た が の の の の の し 、 の の の の の し 、 の の の の の し し か が の の の の の し 、 の の の の の し 、 の の の の し 、 の の の の の し 、 の が ら の の の う の の い 一 と が ら の の う の の ら の の の う の の の う の の ら の の う の の の う の の う の の う の の う の の う の の う の の う の の う の の う の の う の う の の う の う の う の う の う の う の う の う の の う の の う の の う の の う の の う の の う の の う の の う の の う の の う の の う の の う の の ら の の う の の う の の う の の う の の う の の う の の う の の う の う の う の の ら の ろ の の う の の う の の の う の の の う の の の う う ろ の の う う の の う う の ろ の の う の の う の の う の の の の の の の の の の の の の	体の分布から、基質結合部位を持つ細胞 を支える膜貫通ドメイン TM5 が特に重要 たされた。さらに、基質結合部位近辺にエ とに関わる残基が位置することが示され 高度保存領域においては、TM12 に共役 トるタイプの変異体が偏って存在した。ま 則ループの機能関与も示唆された。網羅 個別のアミノ酸残基の機能のみならず、 能について推測できる結果が得られた。
- .	ナメコ子実体由来チロシナーゼの大腸 菌による発現		ソテツ由来 FamilyGH-18 キチナーゼの 芳香族アミノ酸残基について
B-4	〇小西康子(石川県大)、辻茉莉子(北 里大)、後藤秀幸(石川県大)、宗田典 大(石川県林試)、鈴木春男(北里大)	B-6	○藤原麻帆 ', 山内由佳 ', 林 比呂子 ² , 翁長彰子 ² , 平良東紀 ² , 作田庄平 ³ , 深溝 慶(¹ 近畿大・農, ² 琉球大・農, ³ 東 ★・豊)
【目的】 (目的】 (目的】 (目的】 (1) (1) (1) (1) (1) (1) (1) (1)	イーゼ(EC 1.14.18.1)は、モノフェノール <i>o-ジフェノールを</i> 生成し、さらに <i>o-ジフェノ</i> て <i>o-キノンを</i> 生成する反応を触媒する酵 活性中心をもつ。ナメコ子実体のチロシナ は 625 アミノ酸残基をコードしているが、子 したチロシナーゼはC末端側 238 アミノ酸 られていた。このC末端側残基の役割を 目的で、チロシナーゼ遺伝子(TYR67)と、 3 残基を欠く遺伝子(TYR42)を大腸菌で発	【目的】最近、 Family GH-18 と反応はめずれ をしてはめ味が て CrChiA と シダ酸残れて 保存 されてい	我々はソテツ葉軸からクラスVに属する 3キチナーゼ(CrChiA)を単離し、その構造 明らかにした。本酵素は植物キチナーゼ らしく、糖転移反応を触媒し、その構造と やたれている。一方、アミノ酸配列におい 有意な相同性(約 35%)をもつヒトキトトリオ の触媒部位近傍にいくつかの芳香族アミ 在しており、これらは CrChiA においても る。本研究では、CrChiAの活性部位に存
【方法】それそ ンと His タグ TYR42)として 抗体あるいは 染色とチラミン	ぞれの遺伝子は、N末端側にチオレドキシ を持つ融合タンパク質(Trx・TYR67、Trx・ 、発現させ、SDS-PAGE 後に、抗 His タグ 、抗チロシナーゼ抗体(IgG)を用いた免疫 、を基質とした活性染色により検出した。	在する芳香族 を目的とし、 Trp197、Phel F166A)を作 た。 【方法】野生雪	テミノ酸残基の重要性を明らかにすること それらの芳香族アミノ酸残基のうち 66 を Ala に置換した変異体(W197A、 支し、変異に伴う構造と機能の変化を調べ
.		し、 味水性クロ	1マトクフフィーおよびケル濾過によって精

B-7	ラン藻由来β-1,3-1,4-グルカナーゼの加 水分解特異性 の藤村悠介 ¹ ,林加奈子 ¹ ,田茂井政宏		B-9	Methylobacterium extorquens 由来ギ酸 脱水素酵素の精製および特性評価 〇合田千秋、矢野 成和、高木 一好、
	└,北岡本光 ′,深溝慶 └ (' 近畿大 • 晨, ź │ 食総研)			若山 守、立木 隆 (立命館大・理工)
【 ード 含本部 静認 記 記 記 に し に よ に し に よ に し に よ に し に よ に い に し に い た い に い れ い て い に い っ い た い に い れ い て い れ い た い っ い た い れ い た い た い た い っ い っ た い っ い っ い っ た し れ た 、 、 い っ た 、 、 い っ た 、 、 、 い 、 、 い 、 、 、 い っ た 、 、 、 い っ た 、 、 、 い っ た 、 、 、 い っ た 、 、 、 、 、 、 、 、 、 、 、 、 、	Synechocystis PCC6803 由来のグルカナ t C 末端側に Family GH-9 に属する触媒 末端側に二つのセルロース結合ドメインを 育域を有している。これまでの研究により、 $3-1.4$ -グルカナーゼであり、 $\beta-1.4$ 結合の 1.4 -グルカナーゼであり、 $\beta-1.4$ 結合の 1.5 -クレフト中のどの部分で $\beta-1.3$ 結合が いるかは明らかではない。本研究では、 び非触媒領域を欠損させた変異体)を用いて、 $\beta-1.3$ 結合と $\beta-1.4$ 結合の種々 るグルコシルオリゴ糖を基質として反応を 解特異性を調べた。 なもび SSGIcACBDは pET3aを用い <i>E coli</i>)pLySS の発現系によって得た。発現した ラムを用い、 $0.2M \sim 0.4M$ のNaClのグラジ 製した。 $\beta-1.3$ 結合と $\beta-1.4$ 結合の種々の グルコシルオリゴ糖を基質として、最適条 気応を行い、その反応生成物を ICS-3000 AEC-PAD 法によって解析した。 ξ の結合組成からなる三糖、Glc $\beta-1.3$ G3G4G)と Glc $\beta-1.4$ Glc $\beta-1.3$ Glc (G4G3G) なる位置に溶出され HPAEC-PAD 法は、 合順序の異なるオリゴ糖の分離に適してい った。SSGIc と SSGIcACBD は両方ともに、 tと G3G4G4G4G だけを加水分解した。 tと G3G4G4G4G は G3G4G4G4C と G3G G3G4G4G4G4G は G3G4G4G と G に分解さ の基質の $\beta-1.3$ 結合は、本酵素の基質結合 某中心から離れた位置で認識されるものと		【目静酔れ研れたので、 は、 の】メ場合 で、 たまた の しとり、 限 の に な の たまた の た の に の 、 び 本 ま た ま た の 、 の た ま た の 、 の た ま た の 、 の た ま た の 、 の た 、 の 、 の た 、 の 、 の た 、 の 、 の 、	ロトローフ細菌をメタノールを炭素源として 、メタノール脱水素酵素 (MDH) を初発 吸鎖電子伝達系が発現されることが知ら Q 酵素である MDH については精力的な なれてきた。一方、草津市の土壌より単離さ トローフ細菌である Methylobacterium lo. 19 株をメタノール含有培地で培養した でに報告がないアルデヒド酸化還元酵素 脱水素酵素が発現されていることを確認 では、M. extorquens No. 19 株由来ギ酸脱 情製し、本酵素の特性評価を行った。 「果】精製標品として得られたギ酸脱水素 ・受容体にも効率良く電子移動を行った。 与体側の基質特異性は高く、ギ酸以外の に対しては機能しなかった。本酵素は とゲルろ過クロマトグラフィーの結果より、 テロオクタマーのサブユニット構造を有する となった。各サブユニットの詳細な分子質 なんれLDI-TOF MSによる解析を行った。 からは特徴的な紫外可視吸収スペクトルが ラビンならびに鉄硫黄クラスターの存在が 現在、本酵素に存在する金属イオンと有 -の同定を行うと同時に、本酵素触媒反応 ペラメーターについて検討を行っている。
	· · · · · · · · · · · · · · · · · · ·	1		1
B-8	Bacilius circulans KA-304 由来 Family19 型キチナーゼの構造と機能		B-10	Achromobacter xylosoxidans 由来アミン 脱水素酵素の酸化還元挙動解析
-	· · · · · · · · · · · · · · · · · · ·		-	1()出山首博 近勝微弥 ' 头野放利 高不一好

立木 隆(立命館大 理工学部)

【目的】*Bacillus circulans* KA-304 が生成するキチナー ゼ I と α-1,3-グルカナーゼは、*Schizophyllum commune* のプロトプラスト生成に必須である(1)。キチナーゼ I の C 末端領域は、グリコシダーゼ Family19型の触媒ドメイ ンと高い相同性を示す。一方、N 末端領域は、*B. circulans* WL-12キチナーゼAのリンカードメインとわず かに類似しているが、その機能は不明である(2)。本報 では、キチナーゼIの構造と機能を解析した。

【方法】キチナーゼ I の N 末端領域欠失変異体 (CatCHI)を作製した。また、キチナーゼ I の N 末端領 域と緑色蛍光タンパク質(GFP)が融合したキメラタンパ ク質(NtermCHI-GFP)も調製した。

【結果】キチナーゼIと各変異酵素の諸性質を比較し、 以下の結果を得た。① キチナーゼIは、コロイダルキ チンに対して、高い結合活性を示したが、CatCHI はほ とんどコロイダルキチンに結合しなかった。② NtermCHI-GFP は、コロイダルキチンに結合した。この 結果は、キチナーゼIのN末端領域が、キチン結合に 関わることを示唆している。③ NtermCHI-GFPの *S. commune* 菌糸への結合活性を調べた。

(1) 矢野ら, Biosci. Biotechnol. Biochem., 68, 1299-1305, 2004
 (2) 矢野ら, Biosci. Biotechnol. Biochem. 69, 602-609, 2005

立木隆、若山守 (立命館大理工学部、'愛知県産技研食工技セ) 【目的】Achromobacter xylosoxidans が生産するアミン脱水素酵素 (AmDH) は、活性中心にトリプトファントリプトフィルキノン (TTQ) コ ファクターを有すると考えられている。TTQ 酵素としては、メチルアミン 脱水素酵素 (MADH)、芳香族アミン脱水素酵素 (AADH) につい て精力的な研究が展開されているが、それらの TTQ 酵素と比較した 場合、AmDH は、(1) 各サブユニットのN-末端アミノ酸配列の相同性 がない、(2) 塩基性タンパク質である、(3) 分子状酸素に対して極め て安定である、といった特徴を有している。そこで、本研究では、 AmDH のコファクターの酸化還元挙動を中心に、分光学的あるいは 電気化学的手法を用いて特性評価を行うと共に、AmDHの四次構造 による酸化還元挙動の調節について検討した。 【方法】未変性 AmDH 溶液、及び、グアニジン変性後単離した

AmDHのコファクター含有サブユニット(βサブユニット)のみの溶液を 用い、コファクターの酸化還元挙動について、電子伝達メディエータ ーを用いたカラム電解分光法により解析を行った。系の電位をシフト させることによりTTQ 特有の吸収スペクトル変化を観測した。

【結果】未変性 AmDH 及び β サブユニットについて、系の電位に対 するコファクターの UV-vis 吸収スペクトル変化を解析した結果、2 電 子酸化還元反応に対するネルンスト式にフィットし、標準酸化還元電 位がそれぞれ、+0.15 V、+0.11 V vs NHE であると見積もることができ た。AmDH の活性中心に存在する TTQ は、他の TTQ 酵素のそれよ りも標準酸化還元電位が正側にシフトしていた。一方、カルボニル試 薬であるフェニルヒドラジンを未変性 AmDH 溶液に添加した場合、添 加量に応じた連続的な UV-vis 吸収スペクトル変化が観測され、フェ ニルヒドラジンが不可逆的にコファクターに結合している様子が観測 された。しかし、得られたスペクトル変化は MADH を用いた場合のも のとは大きく異なり、コファクター近傍の環境が大きく異なることが示 唆された。

	植物細胞壁分解 ナンリアーゼの構 	酵素ラムノガラクツロ 造・機能相関		D 10	AMV 逆転写酵素と MMLV 逆転写酵素 の熱安定性の比較
B-11	〇川眞田明子 ¹ 、 ² 、橋本 渉 ¹ 、村 食生科、 ² 京大院	落合秋人¹、三上文三 田幸作¹(¹京大院・農・ ・農・応生科)		D-13	〇根本大資、保川 清、井上國世(京大 院農・食生科)
【につ植すラ遺アたる定【基を媒ら【一はにいこ認傍残と唆プ的する知ん」であったを方質収反の結タ、結てろ識に基かさロがする。胞析ラクチゼ、研、で、またで、調心のに、ため、など、していた。して、していた。 しん しんしょう アイステム しんしょう しんしょ しんしょ	こよるや腐地になった。 「ないない」。 ないないないない。 ないないないない。 ないないない。 ないないない。 ないないない。 ないないないない。 ないないないない。 ないないないない。 ないないないない。 ないないないない。 ないないないない。 ないないないない。 ないないないない。 ないないないないないない。 ないないないないない。 ないないないないないないない。 ないないないないないないない。 ないないないないないないないないないないないない。 ないないないないないないないないないないないない。 ないないないないないないないないないないないないないないないないないないない	の分解は、細期応るため、 一とで明ら構物としたのの たい時の構物を したで明ら構物を したで明ら構物を したいたいで したい したいで したいで したいで したいで したいで したいで したいで したい したいで したい したいで したい したいで したい したいで したい したいで したいで したい したいで したいで したい したいで したい したいで したいで したい したい したい したい したい したい したい したい		【 床耐 ウイMLV なM (MMLV なM の して の の して の して して の して の して して の して して の で して の で して の の で の で で で で で で で で で して の で て の で で で して ら に で で で して に で で で して ら に で で で して に で で で して ら に で で で して に で で して ら に で で して に で で し た っ に で で し た っ で て で し た っ で て で し た っ で て で し ら に っ で て で し ら に っ で つ し っ で て で し ら に っ で て つ し ら に っ で で し ら に っ で つ し ら に っ て っ し ら に っ づ し っ っ て っ し ら に う っ て っ し ら に う っ っ っ っ っ っ っ っ っ っ っ っ っ	SP酵素(RT)は、分子生物学的研究や臨 いて必要不可欠な酵素である。反応効率、 の正確性という観点から、トリ骨髄芽球症 VRT)とモロニーマウス白血病ウイルス がよく使用されているが、反応効率や耐 ぶめられている。本研究では、AMVRT の反応速度の温度依存性、熱安定性、お イマー(TP)の熱安定性に対する効果に 酸検討した。【方法】TPとして)」12-18を用いた。逆転写反応は、5 nM TP(濃度は p(dT)」2-18のモル換算)、0.4 で行い、経時的に反応液を採取し、酸不 つ放射能の取込みから初速度を求めた。 100 nMRTを28 μ MTP存在下あるい 、40~55℃で一定時間熱処理を行った。 逆転写反応を行った。【結果】反応至適温 RTが48~52℃、MMLVRTが42~46℃ IVRTのT ₅₀ (10分間の熱処理により活性 下する温度)は、TP非存在下では47℃、 よ52℃であった。MMLVRTのT ₅₀ は、TP に44℃、TP存在下では47℃であった。以 、AMVRTはMMLVRTよりも熱安定性 より熱安定性がより向上することが示され 解析の結果、AMVRTおよびMMLVRT た、熱失活の活性化エントロピーの寄与が たされた。
Γ	凄移状能アナログ	ブ阳害剤を用いた ッーグ	7		Bacillus amvloliquefaciens 中性金属プロ
B-12	レタミルトランス 識機構の解明 〇 中嶋 麻童、韓 (京大化研)	ペプチダーゼの基質認 章 立友、平竹 潤		B-14	テアーゼ(BaNP)の酵素化学的性質の 解析 〇福井善裕、橋田泰彦、井上國世(京 大院農・食生科)
「「「「」」」で「」」ではない。 「」」」、 「」」」、 「」」、 「」」、 「」」、 「」」、 「」」、 「」」、 「」」、 「」」、 「」」、 「」」、 「」」、 「」、 「	$(\gamma$ -L-Glu-L-Cys-Gl $(\gamma$ -L-Glu-L-Cys-Gl $(\gamma$ -L-Glu-L-Cys-Gl $(\gamma$ -L-Glu-L-Cys-Gl $(\gamma, \gamma, \gamma$	$y) ~ \psi / \mu / \phi / \mu / \phi / \mu / \phi / \mu / \phi / \phi / \mu / \phi / \phi$		【目的】 $Bacilluゼ好変アスで性の、アスで性の、たいして、たいした、法】するてたいした、法】たののたののたのたのたのたのたにたのたの$	as の産生する種々の中性亜鉛プロテアー 二等に広く利用されている。それらのうちで 性酵素 thermolysin (TLN)は加水分解の ペプチド合成反応を触媒し、人工甘味料 ムの前駆体合成に利用されている。本研 と高い相同性を持つ <i>B. amyloliquefaciens</i> マテアーゼ(BaNP)の酵素化学的性質を検 と較した。 分画、陽イオン交換クロマトグラフィー、 ハトグラフィーにより <i>B. amyloliquefaciens</i> の aNP を精製した。FA-Gly-L-Leu amide を 素活性を測定し、酵素活性に対する温 響と NaCl の添加効果を調べた。 の 25℃における酵素活性 (k_{cat}/K_m)は かと 25%と低いものの、NaCl によって活性 切に上昇し、4 M NaCl 存在下では 13 倍に その活性化度は TLN と同等であった。ま 室適温度は 55℃、30 分間熱処理により 温度 T_{50} は 65℃であり、TLN に比べて 適 pH は 6.5 であり、 k_{cat}/K_m の pH 依存性 9、 pK_{c2} は 8.0 と求められた。これらは TLN ちった。このことから、BaNP の活性解離基 Zn(H ₂ O)および His である可能性が高い。

D 16	サーモライシンの活性部位への変異導 入による活性への効果	D 17	ヒトマトリックスメタロプロテイナーゼ 7 (MMP-7)の活性解離基の推定
B-15	〇草野正雪,保川 清,井上國世(京大 院農·食生科)	D-17	○竹治仁詩、保川清、井上國世(京大院農・食生科)
【 Bacillus 型れすか位 Aspect Aspect As	モライシン (TLN) は中等度好熱菌 moproteolyticus が菌体外に生産する好熱 プロテイナーゼである.本研究では、活性 が酸性側にシフトし、活性が向上した変異 得することを目的としている.われわれはこ 性部位に位置する Asn112 を Asp に置換 ,活性は低下するが、酸性側の F_A ,が 5.3 (化することを報告した.今回,活性部位に のアミノ酸残基を荷電性アミノ酸残基および ,活性への効果を調べた.【方法】 a -ヘリッ)-Ala180) に位置する Ile168, Ser169, び活性部位間隙の C 末端ドメイン側の領 の Tyr157, Val230, Ser234 を Asp, Glu, , Ala に置換した.成熟型配列とプロ配列 ることにより大腸菌で変異型 TLN を生産 から精製した.変異型 TLN の FA-Gly-Leu LA) および Z-Asp-Phe methyl ester k分解活性を測定した.【結果】Ile168, 70 の変異型 TLN17 種のうち、14 種がカ FAGLA 加水分解活性を有した. 30, Ser234 の変異型 TLN18 種のうち、12 /加水分解活性を有し、そのうち、3 種 4A, S234E) のみが FAGLA 加水分活活 ELN の 2 倍に向上した.【考察】 a -ヘリック Ala180) が活性に重要であり、活性部位 版が基質認識に重要であ いた. Ile168 の側鎖は酵素分子内部を向 [68 を Ala に置換することにより、この領域 いた、活性中心近傍の柔軟性が向上し、活 と考えられる.	【目的】MMP- 型8で鉛和子で、 の子での一方法の し、MMP-7の で し、MMP-7の で 出 し、MMP-7の 一方 進 し、MMP-7の 一方 本 に し、MMP-7の 一方 本 に し、MMP-7 の 一方 法 法 】 MOC 性 の の て た 法 】 MOC 性 に 等 し、 の の 、 性 に た 、 MMP-7 の 一方 準 属 し、 の 、 MMP-7 の 一方 準 属 人 の の 、 MMP-7 の 一方 準 属 人 の の 、 MMP-7 の 一方 準 属 人 の の 、 MMP-7 の 一 た 法 法 】 の の の の の 、 MMP-7 の 一 方 浩 法 】 の の の の の 、 他 た 法 法 】 の の の の の 、 他 た 法 法 】 の の の の の の 、 一 の 、 に 法 法 】 の の の の の の 、 の 一 の 、 の 、 の 、 の 一 の 、 の の 、 の の の の	7 の k_{cat}/K_m の pH 依存性は幅の広いベル、酸性側の pK。が4.0、塩基性側の pK。が から、活性解離基は酸性側が Glu198 また 、な塩基性側が Tyr219 と考えられた。我々 チロシン残基のニトロ化と部位特異的変異 に制活性解離基は Tyr219 でないことを示 こ結合した水分子の可能性を指摘した ¹⁾ 。 的解析と部位特異的変異により、MMP-7 を推定した。 う由来リコンビナントヒト MMP-7 による蛍光 -PLGL(Dpa)AR 加水分解活性(k_{cat}/K_m)の 15、25、35、45°Cで測定した。van't Hoff 温度変化)から活性解離基のプロトン解離 レピー変化(ΔH°)を求めた。 一酸性側が-20.6 kJ/mol、塩基性側が 89.9 た。アミノ酸やジペプチドの解離熱の報告 より、酸性側活性解離基は COOH であ あると考えられた。一方、塩基性側活性解 または (NH ₂) ⁺ と考えられたが、活性部 たは Arg が存在しない。そこで、MMP-7 酸の複合体の立体構造(1MMQ)から、塩 ζした水分子と Pro217 の主鎖の酸素原子 分子に注目した。変異型酵素 E198A の 、A162G および P217G の主鎖の窒子 分子に注目した。変異型酵素 E198A の 、A162G および P217G の主鎖の窒子 分子に注目した。の162G の塩 は 10.3 で、野生型酵素より 0.6 高かった。 7 の活性解離基は、酸性側が Glu198、塩 2 に配位した水分子と推定される。 al., Biochem. J. 386, 263 (2005)
B-16	カテキンとヒトマトリックスメタロプロテイ ナーゼ 7(MMP-7)の相互作用の蛍光 測定にトス解析		農作物中の硝酸イオン, 亜硝酸イオン 含有量調査と亜硝酸イオン低減化物質 の探索
D-10	〇三宅智子、保川清、井上國世(京大 院農·食生科)	C-1	〇愛知真木子,浅見典子,岩田文子,照屋俊明, 冨成祥子,長谷川森一,南基泰,禹済泰,王暁 夏, 永井和夫(山朝大学) 広田生物学部)
Imp-7 MMP-7 水タ与 新 満活さした こした にて 、 記 、 に て に た に 、 に で し た に に 、 に に に に た に た に に に に に に に た に に に に に に に に に に に に に	湯癌などで過剰発現が認められているマト プロテイナーゼであり、癌の転移と浸潤に ^バ 示唆されている。我々はこれまでに、10 ⁰ テキン類の MMP-7 に対する阻害効果を catechin-3-gallate (ECG) が最も強い阻害 ¹ 7µM)を有し、阻害様式は非拮抗型であ ¹ 7µM)を有し、阻害様式は非拮抗型であ ¹ 7µM)を有し、阻害様式は非拮抗型であ ¹ 7µM)を有し、阻害様式は非拮抗型であ ¹ 7µM)を有し、阻害様式は非拮抗型であ ¹ 7µM, ¹ 7 ¹ 7 ⁴	【一般こ菜イ質【衛各はに硝フ存【お~あま含イっ性るいビは物油 りオと含え、「「「「「「」」」 して、「「」」 「「」」 「「」」 「」」 「」」 「」」 「」」 「」」 「」」	中に含まれる硝酸イオンは,体内で亜硝 中に含まれる硝酸イオンは,体内で亜硝 の,亜硝酸イオンはガンや糖尿病を引き起 ている.しかしながら,我が国において野 酸塩量に関する規制はない。野菜の硝酸 含を行うと共に,亜硝酸を低減化する物 ことを目的とした. 中の硝酸イオン,亜硝酸イオンの分析は E解 2000 に従った.食品成分の抽出は, そのまま,あるいは細切後,沸騰水あるい により抽出,濃縮し,水あるいはメタノール 石硝酸低減化活性測定試験に供した.亜 野菜抽出物を等量混合,定量を行い,残 にた. パーマーケットで手に入る野菜中の硝酸 などポリ 野菜抽出物を等量混合,定量を行い,残 した. パーマーケットで手に入る野菜中の硝酸 などポリ たた. パーマーケットで手に入る野菜中の硝酸 などポリ 酸ないたところ,根菜類では などの 、素類では~1,280 mg/kg FW で べて,葉菜類では~1,280 mg/kg FW も含 薬菜類に硝酸および亜硝酸イオンが多く ことが明らかとなった.その大部分は硝酸 肖酸イオン濃度は、5mg/kg FW 以下であ たなっているので,お茶精製標品を用 減化活性を測定した.その結果,アスコル 4%に,お茶のポリフェノール3種の場合出 1様の実験をおこなって,亜硝酸イオンを 四方の実験をおこなって,亜硝酸イオンを

	海台発酵エキスの皿圧降下作用			多糖類との複合体形成による蕎麦主要
C-2	O王 娅、平山 碧、服部美香、辰野拓		C-4	性の改善
	也¹, 荒木利芳、梅川逸人、(三重大院 生資、¹ (株)永谷園)			〇 鈴木 泰 裕,石 川 えり,薬師 寿 治, 中村宗一郎 (信州大学・農学部)
[目性よ(Gてス様エ症た。」)) 目性よ(Gてス様エ症た。」)) 一次ので、 一次ので、 一次ので、 して、 して、 して、 して、 して、 して、 して、 して	こは生活習慣病の予防に効果のある機能 含まれることが知られているが、細胞壁に が妨げられている。我々は γ-アミノ酪酸 産する乳酸菌 Lactobacillus brevis を用い させ、GABA を高含有する海苔発酵エキ エキスは GABA に加えて海苔自身が持つ たち明らかにする目的で、高血圧自然発 の血圧に対する影響について検討 まず 9 週齡の SHR/Izm、雄性ラット、1 化した。海苔発酵エキスを単回経口投与 していると考えられる。そこで今回、本 生を明らかにする目的で、高血圧自然発 の血圧に対する影響について検討 まず 9 週齡の SHR/Izm、雄性ラット、1 化した。海苔発酵エキスを単回経口投与 血圧装置を用いて SHR の血圧を経時的 二、低濃度(2 mg/kg of body)で顕著な いられた。次に、5 週齡の SHR/Izm、雄 7 匹)を粉末飼料 SP にて1週間飼育した エキスを混合した飼料を35 日間与え、血 道定したところ、本エキスを 0.003% 投与 なの活用出し、アンジオテンシン I このの活種を測定したところ、肺および血 性について有意な低下が認められた。さら が 190 mmHg 以上を示す 36 週齢の すして同様の摂食試験を行ったところ、エ ついて有意な血圧降下と肺の ACE 活性 れた。		【シーあアて及しはし、イト分性蕎法【Fachallyのでした。 目、、方るレ多ぼ法は、シグ離及麦と結底の、こん修鎖のを可 蓄シ毒研ン飾では、などでは、いたので、これに、していた。 「「「」」」、 「」」、 「」」、 「」」、 「」」、 「」」、 「」」、	ンパク質は必須アミノ酸であるリジン,バリ に富んでいることから高度利用が望まれる. は重篤なアレルギーを惹起する食素材でも では蕎麦の高度利用に資するために主要 ある Fag e 1 に,限定メイラード反応を用い ,多糖修飾が Fag e 1 の分子表面機能に こついて検討した. 1と20kDaのアラビノガラクタン(AG),また キシログルカン(XG)の混合液を凍結乾燥 分末を 60°C,RH65%で1週間ドライヒーテ によって多糖修飾した.サイズ排除クロマ なり多糖修飾されたものと未修飾のものを 修飾された Fag e 1 のアレルギー性は 6 人の 一患者の血清を用い,ドットブロッティング よって調べた.アレルギー性は 6 人の 一患者の血清を用い,ドットブロッティング よって調べた. ブロッティングの結果,多糖修飾によって ルギー性が著しく低下していることが認め とは ELISA によって,AG 修飾では 3.6~ 修飾では 1.9~10.7%まで減少していること . 一方 50mMPBS(pH7.0)中での Fag e 1 多糖修飾によって~3.5倍に増加している こされた.乳化性も著しく改善された.乳 G 修飾では市販の乳化剤の 59.9%,XG 7%にまで増加した.以上のことから,多糖 定メイラード反応による多糖修飾は Fag e くの低減化を含む分子表面機能特性の改 食品素材としての高付加価値化をもたら いで
				「カンーン朝和姓ペプチビの利用に関ナス」
	ダルテンのプロテアーゼ加水分解にと			
<u> </u>	る溶解度の上昇		C F	研究
C-3	る溶解度の上昇 〇富永良太、保川清、井上國世 (京大院農・食生科)		C-5	 シニン親祖住ペンテトの利用に関する 研究 〇江角信治、岡田渉、笠井尚哉 (大阪府大院 生命環境科学)

	ラッカーゼ-カテキン重合物のトリプシン 阻害によるタンニン分類の試み	小麦ふすま加熱処理物および酵素分 解物の浸水ストレス潰瘍抑制効果
C-6	〇岡田 渉、江角 信治、笠井 尚哉(大 府大院 生命環境科学)	C-8 日澤のな子1、〇三秋向月2、110111 BARLA2、林浩孝3山地亮-2、乾博2、 三浦巧2、中野長久2 (1 大手前栄養学院、2 大阪府大院・ 上金理様
【バユれ合テの明よプAFF【カバ応がよ的-3-トる形ののさカ阻り記結モフをき用縮オと。。成単位大型確でショ価法セフをき用着オと。。成単位てン繰をとせてをきれいいでした。のです見り記結用一取ほど日ので、	マンニンとは、果実などに広く分布し、フラ ル類であるカテキンやエピカテキンを基本 重合した高分子ポリフェノールだと考えら 分子性の縮合タンニンはタンパクなどと複 つタンニン活性を示すとされているが、カ 体、2量なニンはを示すとされているが、カ 体、2量なごなかったときかでは、テッカーゼに いない。そこで本研究では、ラッカーゼに いない。そこで本研究では、ラッカーゼに いない。そこで本研究では、ラッカーゼに いない。そこで本研究では、ラッカーゼに いない。そこで本研究では、ラッカーゼに いない。そこで本研究では、ラッカーゼに いた。合きせたカテキン重合体が持つトリ 行性、牛血清アルブミン吸着作用、Lysや ペプチドとの相互作用を利用したタンニン のテキン(0.43%)は <i>Trametes</i> 属由来のラッ て1時間重合を行い(0.1M pH5.0 酢酸 反応の経時間により重合が進み、重合反 た。反応時間により重合が進み、重合反 疎水性を持つたまたカテキン	【目的】小麦ふすまは小麦粒の皮部にあたる部分で、 製粉過程での副産物であり不溶性食物繊維が多い。 現在では牛や豚など家畜の飼料の他、パンやクッキー などの小麦粉加工食品に利用されている。小麦ふすま 含有成分の機能性に関する研究は多く行われている が、物理化学的処理後の成分についての、新しい機能 性に関する研究は少ないのが現状である。そこで本研 究では小麦ふすま加熱処理および酵素分解物にβ -(1-4),(1-3)グルカンが含まれていたことから、ラットの 水浸ストレス潰瘍発生に及ぼす影響について検討した。 【方法】加熱処理した水溶性画分をA、その残渣にセル ラーゼ処理した水溶性画分をBとした。実験には5週齢 SD系雄ラットを用い、コントロール群とAおよび B添加 群(サンプル A、Bをコントロール開料のβスターチ5% と置換)に分けた。各々14 日間飼育後 24 時間絶食し、
なよりたたを した した した した した した した した した した した した した	に対し吸着することで阻害活性を示すと考 、カゼイン・フォーリン法を用いてトリプシン り定した。その結果、阻害活性は反応時間 その後は重合体の析出とともに減少した。 ・トリプシン阻害活性結果の比較から、カテ ントリプシン阻害活性はある限られた重合 響している可能性が示唆された。この重合 らために、更にポリフェノール吸着性樹脂 E 電気泳動などによる種々の検討を組み た。	ストレスケーシに入れ 23 Cの水槽内に頚部まで水浸し ストレス負荷後、胃腺部に発生している胃粘膜損傷面 積から潰瘍係数を求め、さらにコントロール群に対する 各サンプル群の潰瘍係数の割合を 100 から差し引いて 潰瘍抑制率とした。 【結果】サンプル A および B の β -(1-4),(1-3)グルカン 含有量は、1.0%と 3.3%であった。各群ともに、試料摂 取量、体重増加量ともに有意差は認められなかった。 潰瘍係数はコントロール群に対し、サンプル A、Bともに 有意に低値を示し、潰瘍抑制効果が認められた。この ことはサンプル A、B に含有される β -(1-4),(1-3)グルカ ンによる効果であると考えられる。
	「アムラのキサンチンオキシダーゼ阻害」	重金属蓄積能を有するハッカ属植物の形質
C-7	活性およびマウスにおける血漿尿酸値 低下作用について の近藤 誠,白 潔!,村瀬史朗,濱渦康範, 藤田智之(信州大院農,'信州大農)	転換体の作出の試み C-9 0 杉浦 友美、油布悠太、大門正志、 三枝 聡、田渕 晃 (信州大 農学部 応用生命)
【目れは、院で、「「「「」」」、「「」」、「」」、「」」、「」」、「」」、「」」、「」」、「	発症は、血中の尿酸値の増加が一因と考えら た、熱帯性の果実アムラ(Emblica officinalis)に とる効果があると言われている。しかし、この点 物なデータを示した報告はない。そこで本研究 出物のキサンチンオキシダーゼ阻害活性とマ 後値に与える影響について検討した。 か産の乾燥果実を EtOH, 70%熱 EtOH および 出したのち、得られた各エキスを濃縮後、凍結 こ用いた。In vitro でのキサンチンオキシダーゼ たしてキサンチンを用いて 30 分間反応させ、産 を 290nm の吸光度で測定した。この系に各抽 無添加のコントロールと比較して阻害率を算 ご酸値の低下作用の検証には、ICR 系雄性マウ を用い、試験期間中、市販固型飼料(日本クレ 由摂取させた。予備飼育後、アムラ投与群に たり 100, 200, 500mg の EtOH 抽出物を 3 日 normal 群と control 群(高尿酸モデル)には溶 control 群とアムラ投与群には 3 日目のサンプ 前に、オキソニン酸カリウムを投与した。採血は 口投与 2 時間後に腹部大動脈より行い、得られ 酸量を HPLC により測定した。) EtOH 抽出物、70%熱 EtOH 抽出物および熱 5キサンチンオキシダーゼに対する阻害活性は ml において、それぞれ 46, 30, 30%であった。 が高かった EtOH 抽出物を用いてマウスへの投 をところ、血漿尿酸値を低下させる傾向が認め	【目的】近年,重金属による土壌や水質の汚染は深刻な環境 問題となっている。そこで注目を集めているのが植物を利用し た環境浄化である。本研究は、高い重金属蓄積能をもち、す でに再生系が確立されている Mentha arvensis(日本ハッカ) に、ヒトのメタロチオネイン遺伝子を導入し、より高濃度に重金 属を蓄積する形質転換体を作出することを目的としている。 【方法】まず、ヒトのメタロチオネイン遺伝子である MT を in frame で、4つ繋げた遺伝子である MTL4をプラスミド pBI121 へ挿入し、pBI121-MTL4を作製した。同様に、MT を pBI121 へ挿入し、pBI121-MTL4を作製した。では、これらのプラスミ ドを Agrobacterium rhizogenes MAFF 03-01724 株へ導入し た後、直接接種法により、M. arvensis へ感染させ、毛状根の 誘導を試みた。また、コントロールとして、A. rhizogenes 野生 株のみ、並びに、pBI121 を保持する A. rhizogenes をも感染さ せ、毛状根の誘導を試みた。さらに、これら毛状根からのカル ス誘導に引き続いて、不定芽の誘導を試みた。 【結果】直接接種法により、各 A. rhizogenes を感染させた結 果、それぞれから複数の伸長する毛状根を得た。さらに、これ らの毛状根を Gamborg-B5 培地(1 µM NAA, 10 µM 4-CPPU を含む) へ置床し、26℃、16 時間明期で培養した結果、緑化 したカルスを得た。さらにこのカルスを同組成の培地へ置床 し、培養した結果、MTL4 が導入されていると予想されるカル スから不定芽を得た。

C-10	Agrobacterium tumefaciens 変異株で形 質転換したソバにおける遺伝子標的の 解析 〇野川優洋 '、Putu Suparthana'、清水	C-12	Molecular characterization of rice MAPK components that interact with OsMEK1 OGuosheng Xie, 加藤英樹, 今井亮三
	力 ² 、野末雅之 ¹ 、小島峯雄 ¹ (¹ 信州大 繊 維学部、 ² クミアイ化学工業株式会社生	Research p	(農研機構·北海道農研) urpose】Cold stress-related Mitogen-Activated
【目的】相同組 物 能解析に必須の かわらず、実用 では我々が分離 Agrobacterium t 転換したソバ(Fa 解析した。 【方法】標的遺 U-gene と仮称)を の multi-cloning vector の GUS 切vector の GUS 切vector の GUS 支 vector の GUS 道 vector の GUS d vector の GUS a vector の GUS d vector の GUS d vector の H vector の GUS d vector の H vector N vector の H vector N vector N	「赤科学研究所」 なたによる遺伝子標的法(gene targeting)は遺伝子の機 の手段である。しかし、高等植物では様々な試みにもか 可能な遺伝子標的法はまだ開発されていない。本研究 にた T-DNA の植物ゲノムへの挿入過程に欠陥をもつ umefaciens の 2 変異菌とLBA4404 菌で in planta 形質 rgopyrum esculentum, T ₁ 世代)における遺伝子標的を 伝子としてソバの内在遺伝子(acc No. AB327276, 達選び、targeting vector は U-gene の中央に pBluescript site を含む 445 bpの断片を挿入し、pIG121-Hm binary 遺伝子部分と置換することにより構築した。この targeting faciens M1とM-31 変異菌及び LBA4404 菌に導入し pfaciens 菌を使い、我々の開発した in planta 形質転換 1 号)を形質転換し、無作為に選んだ T ₁ 植物における さ否を、表現形質、Southern 分析及び PCR で確認した。こ より targeting construct の genome 中の挿入部位が異な 咳している。Southern 分析に於いて、M-1 と M-31 変異 rmants で内在 U-gene の部位かそのごく近傍に挿入 示唆した。Targeting construct 中の塩基配列と U-gene (基配列を primers として用いた PCR を行ったところ、 ansformants では期待通りの 3'-end flanking DNA が高 た。以上の結果より、M-1 と M-31 菌で形質転換すると	Protein Kinase in Arabidopsi OsMEK1 (Osl during a mode identification of with OsMEK1 the regulation of [Methods] Y methods were vitro kinase as (MBP) as a su treated for 12% [Results] Tw interactions of respectively. OsMPK3. A strongly enhau indicated that the same signa hybrid assay a OsMPK3. Thi OsMPK3 and up-regulated in it was suggest OsMEK1-OsW	e (MAPK) pathway has been extensively studied s, tobacco and maize. We have shown that MKK1) and OsMAP1 (OsMPK3) are induced erate chilling (12°C) stress in rice. Here report of rice MAPK components specifically interact , and possible involvement of thioredoxin h in of this MAPK signaling pathway. Yeast Two-hybrid system and PXG and ONPG used in evaluating the physical interaction. In ssay was carried out with myelin basic protein ubstrate. Northern blots were done with plants C stress. ro-hybrid screening identified specific and strong of OsMEK1 with OsMPK3 and OsMPK6, <i>In vitro</i> , OsMEK1 directly phosphorylated constitutive active OsMEK1 (OsMEK1 ^{DD}) need kinase activity of OsMPK3. These data OsMEK1 and OsMPK3 are the components of aling pathway for moderate chilling stress. Two also identified thioredoxin h as an interactor of oredoxin h inhibited MBP kinase activities of OsMPK6 <i>in vitro</i> . Interestingly, thioredoxin h is a response to moderate chilling stress. Therefore ted that thoredoxin h is a negative regulator of IPK3 and OsMEK1-OsMPK6 pathways.
HIVE C HON P			
C-11	シロイヌナズナの明暗応答タンパク質 CCaP1の遺伝子発現解析 〇大内雄矢1、長谷あきら2、前島正義1	C-13	葉緑体形質転換技術による光合成強 化植物での外来タンパク質生産 〇田茂井政宏 ¹ 、薮田行哲 ² 、鈴木明子 ¹ 、富澤健一 ³ 、横田明穂 ⁴ 、重岡成 ¹
	(1名大院·生命農、2京大院·埋)		(['] 近畿大・農・バイオ、 ² 鳥取大・農・生物資 <u>源、³RITE・植物生理、⁴奈良先端大・バイオ)</u>
【目的】 本 伊 (4 (4 4 4 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5	究室では、シロイヌナズナにおいて新規の パク質を発見し、その細胞内局在から、 haliana cytosolic Ca ²⁺ -binding protein)、 P3 と命名した。この 3 つのタンパク質間の は類似性が高い。本研究は、各 CCaP の 解明を目的とする。 CaPとGFP の融合タンパク質を培養細胞で とにより、細胞内局在を同定した。またプロ S 解析および免疫ブロッティングにより、発 かにした。次に、様々な生育条件でシロイ で含させ、CCaP1、CCaP2 の転写レベルをリ CR により定量解析した。フィトクロームおよ ーム遺伝子破壊株においても同様に遺伝 と行った。 による解析から、CCaP は細胞質に存在す パク質であることが明らかになった。また GUS 解析の結果は、CCaP1 は葉柄特異 た、CCaP3 は根特異的に発現蓄積すること アルタイム PCR の結果から、CCaP1、	【目が 記念 (目の) (目の) (目の) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1	決質転換技術は、従来の核ゲノム形質転換に、が期待でき、花粉を介した導入遺伝子拡散のど、植物での物質生産を行う上で多くの利点が持ち有効に利用するためには、元来高濃度(約roma)のタンパク質が存在する葉緑体ストロマ度の外来タンパク質を蓄積することが出来るのする必要がある。また、我々はカルビンサイクルBP/SBPaseを葉緑体に導入することで生産性とを明らかにしているが、限られた葉緑体でのタにおいて、生育増強のための必要最低限の発現量を明らかにすることは非常に重要であま、まずGFPを葉緑体ゲノムに導入した形質転換タバコを作出し、光合成機能増大にBPase発現量を検討した。 が質転換タバコを作出し、光合成機能増大にBPase発現量を検討した。 が質転換タバコを作出し、光合成機能増大にBPase発現量を検討した。 が質転換タバコを作出し、光合成機能増大にBPase発現量を検討した。 が質転換タバコでは、GFP 遺伝子を連結約 al stroma 蓄積していた。形質転換体における いたぞくなく、生 性は、野生株と比較して有意な差が見られない 度の外来タンパク質が葉緑体の生理機能に悪

プロモーダーGUS 解析の結果は、CCaP1 は集柄特異的になった。 的に、CCaP2、CCaP3 は根特異的に発現蓄積すること を示した。リアルタイム PCR の結果から、CCaP1、 CCaP2 は暗条件で転写レベルが増加し、さらに暗条件 を続けると24 時間後には日中レベルの10 倍程度まで 増加すること、また転写レベルはジベレリンによっても 増加すること、が分かった。暗条件で転写レベルが増加 することに加えて、長期(60 時間)の暗条件の後、光を 照射すると数時間以内に転写レベルが日中レベルまで 急速に低下することを発見した。また発芽直後の実生 においても、CCaP1、CCaP2 は光に対して、同様の発 現応答を示した。

C-14	 強光応答性スプライシング制御因子 atSR45aの相互作用因子の同定 〇田部記章 1、木村彩子 1、高橋香織 2、吉村和也3、重岡成1,2 (1 近畿大・院・バイオ、2 近畿大・農・バ イオ、3 中部大・食栄) 	C-16	酸化的ストレス応答性遺伝子の発現を 制御する HsfA2 の上流シグナル伝達経 路の解明 O 西澤彩子 1、吉田絵梨子 1、泰中仁 志 1、薮田行哲 2、重岡成 1(1 近畿 大・農・バイオ、2 鳥取大・農・生物資
【子成ラチ新を2007本析【種それ5年ののズスソアたる用示的選ていクタレント、1007のスソアドルの1007の114000114月114日の11400114月114日の114日の114日の114日の114日の114日の114日の1	のストレス応答や防御に関する多くの遺伝 スプライシングにより複数の転写産物を生 これまでに、シロイヌナズナにおいて、スプ 御因子の一つであるセリン-アルギニンリッ ペク質、atSR45aを同定し、その分子特性 た(Plant Cell Physiol. 48: 1036-1049, で本研究では、スプライセオソーム形成に 45aの果たす役割を明らかにするために、 と他のスプライシング因子の相互作用を解 atSR45a は選択的スプライシングにより 6 A(atSR45a-1a e, -2)を生成する。そこで、 で成熟型タンパク質と推測される らよびatSR45a-2と、その他の19種類のシ SR タンパクおよび snRNP との相互作用を および atSR45a-2 は、snRNP の一つであ イス部位の認識に機能する U1-70K およ SR タンパク質である atSCL28 とも C 末端 を介して相互作用した。さらに、シロイヌナ ライシング効率の制御に関与することが atSR45a はスプライセオソーム形成におけ の子を含めた多様なタンパク質との相互作 アライシング効率の制御に関与することが	【HsfA2内すて日本に、 日本のでは、 日本のでは、 日本のでは、 日本のでは、 日本のでは、 日本のでは、 日本のでは、 日本のでは、 日本のでは、 日本のでは、 日本のでは、 日本のでは、 日本の 日本のでは、 日本では、 日本のでは、 日本のでは、 日本のでは、 日本のでは、 日本のでは、 日本のでは、 日本のでは、 日本のでは、 日本のでは、 日本のでは、 日本では、 日本のでは、 日本のでは、 日本では、 日本のでは、 日本では、 日本では、 日本では、 日本では、 日本では、 日本では、 日本では、 日本では、 日本では、 日本では、 日本では、 日本でのでは、 日本でのでは、 日本でのでは、 日本でのです。 日本でので、 日本での 日本でので、 日本での 日本での 日本でので、 日本でので、 日本での 日本での 日本での 日本での 日本での 日本での 日本での 日本での	(MG132)処理によるHsfA2の発現は (MG132)処理によるHsfA2の発現を 調(MG132)処理によるHsfA2の発現を 調修したいでの (MG132)処理によるHsfA2の たび、 (MG132)処理によるHsfA2の たび、 (MG132)処理によるHsfA2の たび、 (MG132)処理によるHsfA2の たび、 (MG132)処理によるHsfA2の たび、 (MG132)処理によるHsfA2の たび、 (MG132)処理によるHsfA2の たび、 (MG132)処理によるHsfA2の たび、 (MG132)処理によるHsfA2の たび、 (MG132)処理によるHsfA2の たび、 (MG132)処理によるHsfA2の たび、 (MG132)処理によるHsfA2の たび、 (MG132)処理によるHsfA2の たの たび、 (MG132)処理によるHsfA2の たの たの たの になる (MG132)処理によるHsfA2の たの たの たの たの たの たの たの たの たの た
			
C-15	シロイメ) ス) 8-0x0-(d)G1P pyrophosphohydrolase, AtNUDX1 による ヌクレオチドプールの浄化 〇小川貴央1、吉村和也2、重岡 成1 (1:近畿大・農・バイオ、2:中部大・食栄)	C-17	 ハナショウカ田来α-フムレン合成酵素 遺伝子のクローニングと機能解析 〇岡本尚'、余豊年'、山崎和久'、 仲宗根薫²、足立恭子³、松田諭³、 原田尚志³、三沢典彦³、内海龍太郎'(1近畿大院・農・バイオ・2近畿大院・工・生化工・3海洋バイオ研)
【いクシ成をNutixを252理方の検の破にのはという。 の構成のことで、 の検いで、 していたす引いて、 の検の破にのは、 の様での、 に、 の検の破にのは、 に、 の検の破にのは、 に、 の に、 に、 の に、 の に、 の に、 の に、 の に、	アレオチドブールは酸化ストレス下にお 素種(ROS)の主要な標的因子となる。ヌ の酸化体の一つである 8-oxo-(d)GTP は けでなく鋳型のアデニンと誤対合を形 DNA 突然変異および mRNA の転写エラー す。我々はこれまでに、シロイヌナズナ olase ファミリーの一つである AtNUDX1 レオチド [8-oxo-(d)GTP] に対する加 を有し、大腸菌 mutT 欠損株の突然変異 ことを示した(J. Biol. Chem. 2005 280: そこで本研究では、詳細な AtNUDX1 の 解析を行った。 】大腸菌 mutT 欠損株を用いて AtNUDX1 Pによる転写エラーの抑制効果について たの結果、転写エラーの発生は、AtNUDX1 り 有意に抑制された。さらに、AtNUDX1 り 有意に抑制された。さらに、AtNUDX1 り 有意に抑制された。さらに、AtNUDX1 の 方における 8-oxo-グアニン量が野生株 約2.5倍蓄積していた。さらに、PQ 処理	【ア類ののゼ伝化ルいてウオ法現反ジ【すでしレ りアテち含ン阻物ノい考か法ら用せたス界164 、ためルマンは、たちのでは、 たち、して、 して、 して、 して、 して、 して、 して、 して、 して、 して、	/ョウガ(Zingiber zerumbet Smith)は、東南 、平洋周辺に生息し、その根茎に多くの種 /イドを含む植物である。そのテルペノイド つかは、薬理学的に重要な役割を果たすも ている。特にハナショウガにしか存在しない は非常に反応性に富み、バクテリアの情報 や、その他種々の有用な化合物へのリード 期待されている。しかしながら、これらのテ 生合成経路や、生理機能は明らかとなって で我々は、ゼルンボン生合成の中間体とし る、 α -フムレン合成酵素遺伝子のハナショ 酸な報告する。 、モン酸など、誘導処理を施したハナショウ RNAを単離し、RT-PCR、RACE-PCRの手 能し、RT-PCR、RACE-PCRの手 全日のNAを単離した。それを大腸菌で発 物質であるファルネシルニリン酸(FPP)とを を解析した。また、リアルタイム PCR により による、遺伝子の誘導効果を調べた。 された cDNA は、548 アミノ酸残基をコード の のRF を持ち、推定分子量は 64.5 kDa の遺伝子の機能解析の結果、主生成物と いく95%)が、副生成物として β -カリオフィ いた。このに現々は、548 FPP 合成に関わ

C-18	新規カチオン結合タンパク質 AtPCaP1 の分子遺伝学的機能解析	C-20	シロイヌナズナの葉の形態制御遺伝子 解析のためにクラスタリングを用いた新 アプローチの開発
0-10	〇水藤百江、富岡利恵、前島正義 (名大院・生命農)	0-20	〇中尾幸子、高橋広夫、小塩高広、岩 川秀和、小島晶子、町田千代子、小林 猛、(中部大学·応用生物学部)
【力域胞類ル発細そは行 方本を見応されたたとし、 「日子を膜似タ現胞の分っ」方をトンは4果過唆ス破な入したたでで、 そしいしらPCの分子に、法作ス組欠週、剰さに壊なした。 で見処成を間鉄、れ対壊がたとっ。 でしたして、 にたって、 にて、 にたって、 についてい について、 につい について、 について について、 について について について について につい について について について	AP1 はシロイヌナズナで発見された新規の (オタンパク質である。この分子は膜貫通領 い親水性分子でありながら生理条件下で細 している。また特定の酵素の一次構造との しれない。さらに各種ストレス処理によるリア ない。さらに各種ストレス処理によるリア と見れない。さらに名種ストレスに応答して した昇が見られた。以上より、AtPCaP1 は 法達に関与している可能性が考えられたが 正理機能は明らかでない。そこで本研究で 学的手法を用いてこの分子の機能解明を 集】はじめに PCaP1 の T-DNA 挿入変異 に、次にこの変異株と野生株を用いて金属 こよる表現型解析を行った。通常の金属イ つ MS 培地に対して鉄および銅が過剰ま 個体培地を作製し、植物体を播種して 2 か に有いない。その結果、 のどちらのストレスに対しても弱まることが さらに栽培時の個体密度を高めた密集、 5、変に見つの植物体の間に統計的に こられた。また PCaP1 プロモーター::GUS にを作製し、病原菌エリシターである flg22 5、塗布部分で顕著な PCaP1 発現増大が 上のことから、PCaP1 がこれらのストレスに すかん、 などもののストレスにならのたい。 たの話して、 などのもののためた。 などのにする。 などもののまた。 などもののない。 などもののない。 ない。 などものの金属イ の などものない。 などものない。 などものでする。 などものない。 などものなたが、 などものない。 などものない。 などものない。 などものない。 などものない。 などものない。 などものない。 などものない。 などものない。 などものない。 などものない。 などものない。 などものない。 などものない。 ない。 などものない。 などものない。 などものない。 などものない。 などものない。 ない。 などものない。 などものない。 などものない。 などものない。 などものない。 ない。 などものない。 などものない。 などものない。 ないた。 などものない。 などものない。 などものない。 などものない。 などものない。 などものない。 などものない。 などものたた。 などのためた。 などのためたる。 などのためた。 などのためたる。 などの ないた。 ないた。 なの た。 ない ないた。 なんであるのであるの たい ない ない ない ない ない ない ない ない ない な	【目植なず要の知 【 シントン しましん しんしょう しんしょ しんしょ	ける葉は主要な器官だが、まだ葉がどのよう 、で作られているかは十分に解析されておら 明は基礎科学的にも農業生物学的にも重 られる。そこでPCを用いた遺伝子発現情報 養の形態制御に関わる遺伝子の探索と、未 機能予測を行う。 ズナの播種 15 日目の茎頂メリステムからR 、Affymetrix 社 GeneChip ATH1で測定 発現データを得た。採取した株は野生株、 称性や扁平さに関わる遺伝子 as1 欠損株、 ASI 過剰発現株、AS2 過剰発現株で、その ラスタリングツール FuzzyART で解析した。 ている as2 遺伝子に抑制されている遺伝子 固が同じクラスタに分類され、適切に分類さ とがわかった。更に、機能予測を行うため 知見を得おり、葉の形態制御に関わってい みでクラスタを作成し、そこに機能未知の遺 長り、機能予測を行える改良版FuzzyARTも
] [シロイヌナズナの葉の発生分化に関わ
C-19	ク質 AtPCaP1 の細胞膜局在様式		る AS2 遺伝子による背軸化因子と低分子 RNA の制御機構の解析
	〇長崎菜穂子, 富岡利恵, 前島正義 (名大院·生命農)	6-21	右崎まゆみ ⁻ , 右川秀和 ⁻ , 上野且久 ⁻ , 高橋広夫 ^{1,3} , 小島晶子 ^{1,3} , 小林猛 ^{1,3} , 町田泰則 ² , 〇町田千代子 ^{1,3} (¹ 中部大・ 植物バイオ, ² 名大・理, ³ 中部大・応生)
【目的】シロイ ン 月結合の に う の た り る か と タ ン り る の か と タ ン タ ン の な い タ ン の な い タ ン 2 35%と タ ン の な い タ ン の な い タ ン の な い タ ン の な い タ ン の で こ の 数 で こ の 数 の の の の の の の の の の の の の の の の の	マナズナの細胞膜に局在する新規カチオ パク質 AtPCaP1 (Arabidopsis thaliana orane associated cation-binding protein 1) 5 個で構成され, Glu と Lys の総含量が約 頃似する既知タンパク質はない。膜貫通領 パク質であるにもかかわらず,細胞膜に安 するという特徴をもつ。生理的機能は不明 究では生化学的機能解明の一環として, 話合様式の解明を目的とした。 果】N 端の Gly にミリストイル基が結合する O Gly を Ala に置換した PCaP1 の C 端側 合させて発現させると,本来,細胞膜に検 aP1 が細胞質に観察された。また, PCaP1 含む無細胞転写翻訳系に 3H-ミリスチン酸 させるとこの RI は PCaP1 に取り込まれた。 P1 がミリストイル化されることを直接的に証 らにホスファチジルイノシトールリン酸との したので, その詳細を解析した。高純度に	【目的】高 (青軸(志) (た) (た) (た) (た) (た) (た) (た)	等植物において葉や花の側生器官は、向 、基部先端部軸、中央側方軸という三つの 発生・分化する。また、向背軸(表裏)の形 分子 RNA が重要な役割をはたしている。シ ナの ASYMMETRIC LEAVES1 (ASI)、 IC LEAVES2 (AS2)遺伝子は、三つの軸形 関与し、向軸(表)化に関わっている。本研 とAS2 遺伝子がどのような機構で向軸化に 5かを明らかにすることを目的とした。 、as2 変異体、AS1、AS2 過剰発現体、野生 A を抽出し、マイクロアレイ解析、real-time 低分子 RNA のノザン解析を行った。 クロアレイ解析の結果、as1、as2 変異体に が増加し、AS2 過剰発現体において発現が 伝子として、メリステムの維持に関わる class 死知遺伝子に加えて、複数の遺伝子が抽出 に、real-time PCR 解析により、AS1、AS2 軸(裏) 化遺伝子の発現抑制に関わってい された。さらに AS2 の発現誘導系を用いて たところ、器官の背軸(裏)化に関わり オー

C-22	アグロバクテリウム由来の植物 oncogene 6b はグローバルに植物遺伝 子の発現に影響を与える 〇町田泰則 ¹ 、寺倉伸治 ¹ 、上野宜久 ¹ 、 田上英明 ² 、中村研三 ³ 、塚越啓央 ³ 、 ¹ 名大院・生命理学、 ² 名市大院・自然科		D-2	ビフィズス菌の新奇オリゴ糖トランスポ ーターに関する研究 の和田潤、鈴木龍一郎 ¹ 、伏信進矢 ¹ 、片山高嶺、 北岡本光 ² 、杉本華幸 ³ 、田中晶善 ³ 、熊谷英彦、 芦田久 ⁴ 、山本憲二 ⁴ (石川県大・生資工研、 ¹ 東大 院農生科・応生工、 ² 食総研、 ³ 三重大院・生物資源、
【リるま影ホ進植【るの形【NたHまま66ベロレ形10た影才目ウ遺れ響ルす物方タ相質結52の、ヒクをヌル転、60をキンこ胞】コ作換】)。をと60スロ変ナを換けは与シンで、えをとに酵の用体(1)、キストマ化ズマ体(1)、44人にトマ化ズマ体(1)、44人にトマイン、44人)	」子、名人防:生印辰子 遺伝子は、植物病原細菌アグロバクテ よファシエンスの T-DNA 領域に存在す ちり、植物細胞に転移し染色体に組み込 き現する。この遺伝子は、腫瘍の形態に ること、タバコ細胞中で発現させると、 添加しなくても、タバコ細胞の分裂を促 が知られている。本研究の目的は、6bの おわられている。本研究の目的は、6bの おける分子機能を解明することである。 まていの-hybrid 法により 6b と相互作用す タンパク質を探索した。同定した3種類 日のいて分子的特性を解析した。6b のDNA マイクロアレイ解析を行った。 3 つの分子を同定した(NtSIP1,NtSIP2, いする。(2) 6b タンパク質は、ヒストン 、マクレオソーム構造を作る機能、つ メ・シャペロン活性があった。以上から、 チン構造に影響を与え、遺伝子の転募 なしていたものは10%であっ なっとがわかった。このような中には、 5 ことがわかった。このような中には、 5 遺伝子などがあることを報告する。	-	【そ共ス(トス糖あドを加構関【ス共い合価】Gとな所Kのなり増注B、Gal」のにして、一部遺すっとして、大等た果るつ基それです。 ビ殖目、Gオ菌トフトレ伝るでおし、大等た果をるつ基それ様までは、「それ」、 フにさるは、エー部遺すっと、大等、「話ののが結った」では、「一部遺すっと」、大等、「正常ののがたま」、 とて、「「「」では、「「」、「」、「」、「」、「」、「」、「」、」、「」、「」、「」、「」、「」、	「京大院生命・統合生命) ズス菌はプロバイオティクスとして、また、 「効なオリゴ糖はプレバイオティクスとして ている。最近、北岡らは、ラクト-ハ-ビオー る1-3GlcNAc)およびガラクト-ハ-ビオース 1-3GalNAc)を加リン酸分解する酵素ラク ペホスホリラーゼ(LNBP)が種々のビフィズ 内に存在することを明らかにした。これら2 クオリゴ糖やムチン型糖鎖の構成成分で ス菌はラクト-ハ-ビオシダーゼおよびエン チルガラクトサミニダーゼを分泌して、2糖 内に取込むと推測される。そこで、我々は ひ上流に存在する ABC トランスポーターを 子群に注目し、LNB/GNB の取り込みに ものと推測して解析を行った。 かなして、2糖 たらのと推測して解析を行った。 かなして、2 時に発展がとり本トラン にたきに注意し、LNB/GNB の取り込みに ものと推測して解析を行った。 た時に発見が観察され、ラクトースを始め たち。GL-BP と種々のオリゴ糖との結 と数量計(ITC)を用いて、熱力学的に評 こよる結合測定においては、LNB および た時に発熱が観察され、ラクトースを始め の2糖や単糖の滴下時には発熱が見られ 合等温線の解析結果から、GL-BP は1箇 いナトをもち、LNB および GNB に対する とれて、 本であることが明らかと 基質複合体の共結晶化に成功した。
D-1	環境要因によりアルキルフェノールボリ エトキシレートの分解が変化する 〇堀田 雄大*、細田 晃文*、吉川 博道 **、田村 廣人* (*名城大農・生環科、**福岡工大・工)		D-3	枯草菌由来新規リパーゼの機能解析 昌山敦 ¹ 、〇加藤志郎 ¹ 、寺島卓也 ¹ 、桑 名律子 ² 、高松宏治 ² 、渡部一仁 ² 、吉村 徹 ¹ 、邊見久 ¹ 、角田秀典 ³ 、木原智子 ³ 、 森山龍一 ³ (¹ 名大院・生命農、 ² 摂南 キャ ^第 ³ 中朝中で広田生物
L 工薬 APEOnが 新 APEOnが 新 APEOnが 新 APEOnが 新 APEOnが 新 APEOnが 新 APEOnが 新 APEOnが 新 APEOnが 新 APEOnが 新 APEOnが 新 APEOnが 新 APEOnが 新 APEOnが 新 APEOnが 新 APEOnが 新 APEOnが 新 APEOnが 本 本 本 本 本 本 本 本 本 た 本 本 、 本 な を よ 家 の た た 本 、 、 気 の で た 、 本 、 、 な の た 、 本 、 、 、 、 、 、 、 、 、 、 、 、 、	ト、和PEO _n)は、合成洗剤、乳化剤および農 して大量に使用されてきた。ところが、 可川および農耕地に存在する微生物により た、APEO _n)は、合成洗剤、乳化剤および農 して大量に使用されてきた。ところが、 可川および農耕地に存在する微生物により たまで、力量に使用されてきた。ところが、 の川および農耕地に存在する微生物により たまして、一ルやルフェノール(AP)等へ されることが明らかになった。演者らは、新 をAPまで好気的に分解する菌を農耕地か 本菌株は、栄養状態の違いにより、APEO _n いが確認された。そこで、分解活性促進物 として本研究を実施した結果、分解活 と同定したので報告する。 ルフェノールポリエトキシレート(OPEO _n)を 常養条件の異なる培地を用いて、本菌株 にた。定量分析は、ガスクロマトグラフィー HIMADZU)、分解機構の確認は、 Voyager-DE PRO)をそれぞれ用いた。 解菌は、gyrB 遺伝子の塩基配列より、P. 2 株と命名した。分解機構は、1)OPEO _n の こる OPEO ₃ までの分解、2)OPEO ₃ から直接 支成するという3 段階の分解により、OPを 生成するという3 段階の分解により、OPを 生成するという3 段階の分解により、OPを た。また、硫酸鉄は、本菌株の増殖 ためった。この結果から、環境中の栄養 分解菌の増殖ではなく、酵素活性等の が明らかになった。このことは、環境要因が い		【造細解間い新 【解応用酵 【解特るL現が我Bをなラ性がか素細目(胞過のる規 方析答い素 結析異こアさリ々に定差ニがりらの菌剤子由と要こ一 枯、密及 in的 しらに示ン組ゼ酵の見に唆一 茸 K び if 解 しらに示ン組ゼ酵 23結れろれ活い発遍間 不らよらせ 虐 C 肌に材 ザ v5 男でに換活 第23結れろれ活い発通	へ、★、エロノールTIAN 泡子の発芽は、胞子耐熱性を担う表層構 のペプチドグリカン(コルテックス)層、母 のペプチドグリカン(コルテックス)層、母 の外膜、及びコートタンパク質層)の自己分 得る。近年、胞子膜脂質代謝と発芽との 調連性が示唆され、強い興味が持たれて な々は、枯草菌休眠胞子中に見出された 様タンパク質 YcsKの機能解析を試みた。 調視株胞子を用いた表現型の解析(発芽 として、たま現型の解析(発芽 なりたまで見つた)、及び組み換え体を りにおける枯草菌及びセレウス菌 YcsKの 下を行った。 ンブロットと GFP 融合タンパク質を用いた K遺伝子がの ^K 及びGerEに依存へ同在す たで答するためで、及びGerEに依存へ同在す たた、可能が消失した。大腸菌に発 たた、す能が消失した。大腸菌に発 たた、す能が消失した。大腸菌に発 たた、すた、同能子の発芽した。 たとから、 素を LipC と命名することを提唱した(J. 69)。さらに、休眠胞子中の遊離脂肪酸量 果、野生株胞子と <i>lipC</i> 欠損機下的子 た。これらの結果 、LipC による胞子外膜の脂質代謝とL-ア た。これらの結果 無細菌ゲノムに広く保存されている本酵 に参称の関与が、少なくとも Bacillus 属 りな現象であると考えられた。

D-4	コリネ型アミノ酸生産菌のアルカリ性 抵抗性に関わる機能の探索 〇中村美緒 ¹ 、深井理恵 ¹ 、大西淳子 ² 、 竹野誠記 ¹ 、池田正人 ¹ (信州大農・応生科 ¹ 、協和発酵 ²)		D-6	Electrochemical regulation of metabolism in <i>Propionibacterium</i> <i>freudenreichii</i> ET-3 O Yung-Fu Wang, Masaki Masuda, Seiya Tsujimura, Kenji Kano Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University
【目的】中性後アリカみられて、「「「「「」」」」、「「」」」、「」」、「」」、「」」、「」」、「」」、「」	数生物は、一般に、細胞外のpH が弱酸性や弱 主育することができる。そのpH 恒常性に関する coli など一部の細菌で解析が進められている 酵菌である Corynebacterium glutamicum では 冷回、同菌における弱アルカリ性環境での生育 明を目的として、以下の検討を行った。 朱の生育におけるpH 依存性は、最少培地を用 および液体培養で調べた。培地のpH は、種々 たて調整した。相補遺伝子のショットガンク ハーケンスは定法に従って行った。 は先に、C. glutamicum 野生株からランダム変異 切性の寒天培地で生育できなくなった変異株 て報告した(H19 年 3 月 農化大会)。これら変 中性付近では野生株と同等に生育したが、pH9 切性環境では野生株とり著しい生育不良を示 これら変異株はアルカリ性抵抗性に関わる機能 であると考えられた。本菌のゲノムライブラリから たを回復させる DNA 断片の探索を試みた。 を異株から相補 DNA 断片が取得された。シー これらの中には機能的に異なると推定される が含まれていた。この結果から、本菌のアルカ ±組みは1つではなく、複数の機能が関わって された。		[Purpose]In pre of bacteria can u carbon electrode microbe should transfer out of study, <i>P. freuder</i> [Methods] <i>P. fr</i> biocatalyst and electrochemical electrolysis cell growth medium performed at 37 end products of medium under ss [Results]After system produce when positive microbial cells glucose oxidatic potential of -20 end-product and a positive potential of -20 end-product and a positive potential of -20 high applied po- microbial cells, profile from that	evious studies, it has been proved that some kinds atilize endogenous mediator for electron transfer to e during substrate oxidation. This metabolism in be regulated by controlling the rate of electron cell by adjusting the electrode potential. In this <i>meichii</i> ET-3 was utilized to verify this purpose. <i>eudenreichii</i> ET-3 and glucose were used as a a substrate (electron donor), respectively. All experiments were carried out in a flow-type filled with a carbon/graphite-felt electrode and the n of <i>P. freudenreichii</i> ET-3. Amperometry was 7 oC under anaerobic conditions. The profiles of were analyzed for the electrochemical growth teady state conditions at given applied potentials. seeding bacteria into the electrode during the donate the electrons to the electrode during the on without artificial mediator. At a low applied 50 mV vs. Ag/AgCl, lactate was the dominant reached 18 mM, however it decreased to 5 mM at ntial of 500 mV, in which formate became the Che concentration of propionate which was one of d products also decreased when the potentials 260 to 500 mV. It was considered that electrode at obtentials can work as the electron acceptor for which leads to the change in the end-product t obtained under normal anaerobic conditions.
[コリネ型アミノ酸生産菌の酸素利用に	1 [乳酸菌とプロピオン酸菌の共培養によ
D-5	 関わる機能の探索 〇小松朋葉¹、馬場将弘¹、大西淳子²、 竹野誠記¹、池田正人¹ (信用主席, 広告利し, 均和発酵²) 		D-7	る細胞外電子移動の促進 〇増田真規、王永福、辻村清也、加納 健司(京大院農)
【目的】アミノ 条件として好気 の生に、C.glu O ₂ 濃のO ₂ 利用に 明らかでない。 を目法】変してない。 を目法】などの限界に のでない。 を目法】振調にたる たったの、 の多くはは野酸、 ないに したのでは により変更れ 版とう でたい。 を た。 の の の の の の の の の の の の の の の の の の	1、1日7月ノス度「ルンエキキ、1994日75日67) 酸発酵菌 Corynebacterium glutamicum は発酵 気性の環境を要求する。このため、O ₂ はアミノ酸 左右する重要な要因の1つとなっている。我々 tamicum が寒天培地上でコロニーを形成できる なし、5%付近にあることを報告した。しかし、本 こどのような機能が関わっているか、その詳細は 今回、本菌の O ₂ 利用に関わる遺伝子の探索 の検討を行った。 株の生育における酸素依存性は、最少培地を 養(高通気条件)と静置培養(低通気条件)の2 ,相補遺伝子のショットガンクローニングやシー こ従って行った。 ま先に、C. glutamicum 野生株からランダム変異 5% O ₂)環境下での寒天培地で生育できなくな 多数取得して報告した(H19 年 3 月 農化大 異株の生育特性を液体培養で調べた。変異株 培養では野生株と同等に生育したが、静置培 より著しい生育不良を示した。従って、これら変 利用に関わる機能が損なわれた株であると考 前のゲノムライブラリから酸素要求性を回復させ の探索を試みた。その結果、各変異株から相補 気得された。シーケンスの結果、これらの中には ると推定される数種の遺伝子が含まれていた。		【にこあの培ビ容でし報fr移【て37よを【と酸乳え少流た結生進 目産どる基養ン体、た。告ue動方用Cび電結こ生酸ら量が。果成さ 的みで酸的たをしれまさ加尿】い、両流】ろ成菌れの得次、しれ 微出で酸的た利て日、れに系鉛ポ気のし極電のの。デれ、流メ可 物える、して日、れいの化テ条混て電流減Nまィ、乳値デ能	燃料電池は、微生物が有機物の代謝を行う際 5)還元力を電気エネルギーに変換して取り出す 置である。今回は代表的な嫌気性菌の一つで <i>ctococcus lactis</i> を触媒として微生物燃料電池 究を行った。グルコースを基質として嫌気的に 乳酸菌は NADH からの電子受容体としてピル 、乳酸を生成する。本研究では細胞外電子受 極を生成する。本研究では細胞外電子受 極を生成する。本研究では細胞外電子受 して増養することを目的と 加電子伝達メディエーターを生成することが いるプロピオン酸菌 Propionibacterium ET-3 との混合培養を行うことで、効率的な電子 構築を目指した。 処理したカーボンフェルトを作用電極とし 、ソシオスタットで電極の電位を制御し、 件下で乳酸菌、プロピオン酸菌の培養、お 動定した。 位を一定に保った条件で乳酸菌を培養した が観察さ行った。また、電極への電子移動 がした。このことから、 和DHから電極への電子移動が起こったとやに 乳酸の減少と酢酸の増加がより顕著に表れ 酸菌とプロピオン酸菌の混合培養を行った の増加が見られたため、プロピオン酸菌の ィエーターにより、電極への電子移動が促 性が示唆された。

D-8	酵母 <i>Saccharomyces cerevisiae</i> におけ る NADH キナーゼ活性の必須性	D-10	メチロトローフ酵母 Pichia methanolica の2種のアルコールオキシダーゼ遺 伝子プロモータの評価と発現制御
D-0	〇宮城 光、河井重幸、村田幸作 (京大院・農) 	D-10	〇中川智行 ¹ 、藤村朱喜 ² 、宮地竜郎 ² 、 冨塚登 ² 、早川享志 ¹⁽¹ 岐阜大 応用生 物科学部、 ² 東農大 生物産業学部)
【目的】NAD NADD をNA Saccharomyce U、NAD とNA Saccharomyce U、NAD(H)す菌 NAD(H)す菌 NAD(H)す菌 NAD(H)す菌 NAD(H)す菌 NAD(H)す菌 NAD(H)で NAD(H) NAD(H)で NAD(H)	9 キナーゼは NAD のみをリン酸化して 合成するのに対して、NAD(H)キナーゼは ADH の両方をリン酸化する。酵母 bes cerevisiae には、3 つの NAD(H)キナー 胞質内に局在)、Pos5p(ミトコンドリアに局 Yef1p(局在性不明)が存在する。また、 一ゼの3 重変異株(<i>utrlyef1pos5</i>)は致死 で研究では、NADH キナーゼ活性を示さな 不可たでは、NADH キナーゼ活性を示さな を新わた。 ドリア(Mit)の機能に、NADH キナーゼ活性を示 あるかどうかを明らかにすることを試みた。 とyffBを、それぞれ POS5 のプロモータ S5のプロモーターとPos5pの推定Mit リー 下流につないだキメラブラスミドを作製し キメラプラスミドを用いて、 <i>utrlyef1pos5</i> を宿 スミド・シャッフリングを行い、細胞の生育性 現型の相補性を観察した。また、推定Mit 同付加によるUtr1pとYfjBのMitへの輪 ために、酵母細胞をMit 画分と細胞質 るために、酵母細胞をMit 画分と細胞質 とUtr1pとYfjBの下流にGFPを融合させ を細胞内で発現させ、細胞を蛍光顕微鏡 ミド・シャッフリングより、細胞の生育とMit ADH キナーゼ活性が必須ではないことが また、分画実験より、推定Mit リーダー配 こUtr1pとYfjBがMit へ輪送され、推定 配列を付加していないUtr1pとYfjBが、 されないことを示す結果が得られた。	【目的 $P.m$ コー。ない ー本へす した に 我用い 市 和 で 御 は 和 の 行 で 御 は る な た さ 2 methanolica に た や て 海 は る な な さ 2 methanolica に た や て の で 御 に あ れ い で 御 は る な な た さ ろ れ に で 御 は る な な さ た き 。 、 こ と 、 、 こ と 、 、 こ と 、 、 こ と 、 、 こ と 、 、 こ と 、 、 こ と 、 、 こ と 、 、 こ と 、 、 こ と 、 、 こ と 、 、 こ と 、 の で の い で で の い で の い で の い で で の い で の こ の い で の い こ の い で の い こ 、 の つ い こ の い で の い こ の い こ の つ い こ の い つ こ い の つ い こ の い こ の つ い こ の つ い つ こ い の つ い つ こ い つ つ い の つ い つ こ い つ つ い つ つ い つ つ い つ つ い つ つ い つ つ い つ つ い つ つ い つ つ い つ つ い つ つ つ つ い つ つ つ つ つ い つ	ethanolica はメタノール代謝の鍵酵素アル レダーゼ(AOD)をアイソザイムとして保持す ザイムは 2 種のサブユニットがランダムに 8 することにより形成され、両サブユニットをコ D 遺伝子は共にメタノール(MeOH)で強力 るが、その発現は異なる制御をうけている。 遺伝子プロモータを異種タンパク発現系に 、単に異種タンパク質を大量発現させるだ 、単にころで、本研 の AOD プロモータを応用した新規 P. 異種タンパク発現系の開発を目的とする。 酵母の PHO5 をレポータとし、本遺伝子が 2 種タンパク発現系の開発を目的とする。 酵母の PHO5 をレポータとし、本遺伝子が 2 性フォスファターゼ(AP)の活性により 2 種 ロモータ(P _{MODI} , P _{MODI})の発現制御について PはP _{MODI} の支配下のもと、MeOHのみなら い(Gly)によっても強力に発現した。一方、 発現は Gly で完全に抑制されたが、Gly は る P _{MOD2} 発現を抑制しなかった。また、 に対する発現応答にも差異がみられ、低 は P _{MOD1} が、高濃度下では P _{MOD1} の発現が った。さらに、酸素濃度が AOD 発現におい の)、高酸素濃度条件で P _{MOD2} は P _{MOD1} よりも い発現を示した。以上のことから、P _{MOD1} およ 異種タンパク質の大量生産において、発現 よび発現量をメタノール添加量・時期、さら
	分裂酵母の経時毒命を延長させる新想	[│ 麹菌 CCAAT-box 結合因子による転写
D-9	 分裂酵母の経時寿命を延長させる新規 遺伝子 <i>ecl1</i>⁺ ○ 大塚北斗、三田知花、饗場浩文 (名大院・生命農学) 	D-11	麹菌 CCAAT-box 結合因子による転写 制御ネットワークの網羅的解析 〇 高橋 明珠1、佐野 元昭2、小林 哲 夫1、加藤 雅士1(1名大院生命農・
D-9 【目的】出すり ていたことの にをきっていた。 に、たいに、 たのに、 たのに、 たのに、 たのに、 たのに、 たいに、 たいに、 たいに、 たいに、 たい、 たい、 たい、 たい、 たい、 たい、 たい、 たい、 たい、 たい	 分裂酵母の経時寿命を延長させる新規 遺伝子 eclt[±] ○大塚北斗、三田知花、饗場浩文 (名大院・生命農学) 弊母、線虫、ショウジョウバエなどのモデル と研究が、現在の老化遺伝学研究におい 割を果たしている。最近、分裂酵母 paromyces pombe)でも種をこえて保存され 因子とその効果が一部証明された。我々は 研究において新たな知見を得ることを目指 の定常期生存率(経時寿命)を上昇させる と同定することを目的とした。 の寿命は分裂寿命と経時寿命があり、経時 定常期における生存率を経時的に測定する さできる。我々は、経時寿命が短いとされる、 生 MAP キナーゼ:Styl の欠損株を用い、 延長させる多コピー数サプレッサー遺伝子 	D-11 【1日本の「日本」の「日本」では、 「日本」では、 「日本」の「日本」では、 「日本」」では、 「日本」では、 「日本」では、 「日本」では、 「日本」では、 「日本」では、 「日本」では、 「日本」では、 「日本」では、 「日本」では、 「日本」」では、 「日本」では、 「日本」では、 「日本」」 「日本」」では、 「日本」」 「日本」」 「日本」」」 「日本」」」 「日本」」」 「日本」」 「日本」」」 「日本」」 「日本」」」 「」」」」 「日本」」」 「日本」」」 「日本」」」 「日本」」」」 「日本」」」」 「日本」」」」 「日本」」」」 「日本」」」 「日本」」」」 「日本」」」 「日本」」」 「日本」」」 「日本」」」 「日本」」」 「日本」」」 「日本」」」 「日本」」」 「日本」」」 「日本」」」 「日本」」」 「日本」」」 「日本」」」 「日本」」」 「日本」」」 「日本」」」」 「日本」」」」 「」」」」 「」」」」 「」」」」 「」」」」」 「」」」」 「」」」」」 「」」」」 「」」」」」 「」」」」 「」」」」」 「」」」」」」	 麹菌 CCAAT-box 結合因子による転写 制御ネットワークの網羅的解析 〇 高橋 明珠1、佐野 元昭2、小林 哲 夫1、加藤 雅士1(1名大院生命農・ 生物機構、2金沢工大・ゲノム研) 菌 CCAAT-box 結合因子(Hap 複合体)は な酵素遺伝子を始めとする様々な遺伝子 御することが明らかになっている。近年、麹 いでの研究が こ。我々はHap 複合体により転写制御される。 後本はHap 複合体による麹菌転写 ークの全体像を理解することを目的とした。 吉果】転写制御下の遺伝子群を網羅的に解 Hap 複合体サブユニットの優勢阻害型変 て DNA マイクロアレイ解析を行った。その の翻訳関連遺伝子が転写抑制されることが た。麹菌ゲノム中に同定されている全ての タンパク質(RP)は Hap 複合体により転写

D-12	アラキドン酸生産性糸状菌 Mortierella alpina 1S-4 の Agrobacterium tumefaciens mediated transformation (ATMT)法による脂肪酸組成改変 〇安藤晃規、角田洋輔、小川順、櫻谷英 治、久保康之 ¹ 、清水昌 (京大院農・応用生 命、 ¹ 京都府大院・農)		D-14	 バイオリファイナリーを目的としたリボフ ラビン過剰生産Ashbya gossypiilに関 する研究 〇田島諭¹、朴龍洙^{1,2}(¹静大 農 応 生化、²静大・創造科学技術大学院・総 合バイオサイエンス)
【目的】 報告 1 1 1 1 1 1 1 1 1 1 1 1 1	これまでに Mortierella alpina 1S-4 及びその誘 材とした、アラキドン酸をはじめとする各種の高 酸生産を報告してきた。また包括的な形質転 分子育種を行うことで脂肪酸組成の改変を実 来 M.alpina 1S-4 における宿主ベクター系で と用いて直接胞子に形質転換ベクターを打ち 賃転換を行ってきたが、今回新たに tumefaciensを用いた遺伝子導入法により脂肪 を試みたので報告する。 こて従来の宿主ベクター系におけるウラシル要 用い、バイナリーベクターの T-DNA 領域に野 a5 遺伝子発現用カセットおよび過剰発現を目 ち由来のω3 遺伝子発現カセットをタンデムに挿 奥ベクターpBIG3ura5ω3を構築した。本ベクタ ポレーションにより、A. tumefaciens C58C1 株に trella alpina 1S-4 株の形質転換を行い、脂肪 を行った。 ない安定性を示す、形質転換体の取得に成功 らの脂肪酸分析からホスト株とは有意な差を示 での過剰発現に起因するエイコサペンタエン酸 した。本結果より従来の遺伝子銃による形質転 ATMT 法による穏やかな条件下でのより安定 系の構築に成功した。		【素か土油こ(じしにを株変す【与を下理ンあたク【粋1、養素後更的人」)脂とどて突有を異る方す阻、し酸り。質結な g条源はなり臭そしをよど、軟す獲株。法る害ニた耐コ獲発果菜/L件を、るり臭そしをよどる変る得の イグすト菌性口得現3種でで廃実がない、B本異変すプ タリる口株株二しをし油ある.6 東辺でない、B本異変すプ タリる口株株二しをしたり、3.6 東辺でのなど、B、A、A、A、A、A、A、A、A、A、A、A、A、A、A、A、A、A、A、	油の精製工程では、粗油脂に含まれる色 余去するために酸性白土が用いられる。し 着能力が低下すると油脂系廃棄物(廃 下すると油脂系廃棄物(廃 下すると油脂系廃棄物(廃 下すると油脂系廃棄物(廃 下すると油脂系廃棄物(廃 下すると油脂系廃棄物(廃 下すると油脂系廃棄物(廃 たる <i>Ashbya gossypii</i> ATCC 10895を用いる にもれた残留する植物油から、リボフラビン の生産を行い、有価物化の可能性を検討 研究では、アルキル化剤を用いてランダム 生産を行い、有価物化の可能性を検討 の生産を行い、有価物化の可能性を検討 の生産を行い、有価物化の可能性を検討 では、アルキル化剤を用いてランダム と、 なたてい、生産者の目にた。また、獲得した高生産 なたまた、獲得した高生産 たる。生た、 すっオーム解析により生化学的性質を検 やことを目的とした。また、獲得した高生産 たる。 たたまたのです。 などの一において野生株を用いた場合、純 たる。一方、今回獲得した変異株は同様の なした培養でも、リボフラビン濃度培 たる。一方、今回獲得した変異株は同様の たる。 なした培養でも同様の結果を示した。 ないて解析を行い、 ないた場徴の変化ついて解析を行い、 ないた。 などの一における代謝の変化のいて解析を行い、 ない、 などの一における代謝の変化のいて解析を行い、 ない、 などの一における代謝の変化のたる ないて解析を行い、 ない、 などの一方、 などの一方、 などの一般がた。 などの一方、 などの一般がでは、 などの一般がた。 などの一方、 などの一般がでも、 などのに などの一般がた。 などの一般がた。 などの一般がた。 などの一般がた。 などのでは、 ないたまでは、 などの一般がた。 などの一般がた。 などのでは、 ないたままた、 などの一般がた。 などのででは、 ないて解析を行い、 などの一般がた。 などのででは、 などの、 などのででは、 などのでのた。 などのでのた。 などののでのでのた。 などのでのた。 などのでのた。 などのでのた。 などのでのでのでの、 などのでのた。 ないて解析を行い、 などのた。 などのででは、 ないて解析を行い、 ない、 などの一般がた。 などのででは、 ないて解析を行い、 ないた。 などのでのた。 ないて解析を行い、 ないた。 などのでのた。 ないて解析を行い、 ないた。 ないて、 ないて、 ないて、 ないて、 ないて、 ないて、 ないて、 ないて、 ないて、 ないて、 ない、 ないて、 ない、 ないて、 ない、 ないて、 ない、 ないて、 ない、 ない、 ない、 ない、 ない、 ない、 ない、 ない
		1 -		
D-13	知識情報処理を用いた高機能性酵素 の効率的デザイン 〇冨田康之、加藤竜司、大河内美奈 (名大院・エ)、本多裕之(名大院・エ、 名大・予防早期医療創成センター)、木 村昌博、中野秀雄(名大院・生命農)、 則武智哉、吉田洋一(宇部興産)		D-15	2 ² -テオキシリホヌクレオシドの酵素合成に有用なホスホペントムターゼの機能解析 の堀之内伸行、川野貴子、酒井隆史、 小川順、清水昌 (京大院・農・応生科)
【目的】】 酵の 手的 手的 手 か が る 究 で も な い 。 み 合 活 目 指 、 多 究 で せ な に み の 大 で で な い 。 み 合 活 目 指 「 本 合 た 居 指 指 「 本 こ る 究 で せ な む 、 み た め 、 研 わ た 世 な な の み に る 客 で も な こ て ろ 、 ろ で ち さ に て ろ 、 ろ の た で ち こ て ち に て ち こ て ち に し に た 、 ろ 、 ろ 、 ろ 、 ろ 、 ろ 、 ろ 、 ろ 、 ろ 、 ろ 、 ろ 、 ろ 、 ろ 、 ろ 、 と ろ 、 ろ 、 ろ 、 ろ 、 ろ 、 ろ 、 ろ 、 た こ る こ た こ て こ た こ て こ た し こ た こ て た し こ た た て て た い こ た た て こ た し て た い た い た こ て た い た い た て で た い た て で た い た で た い た で た い た で た い た で た い た た い た い た い た い た い た い た い た い た い た い た い た い た い た い た い た い た た い た い た い た い た い た い た い た い た い た い た い た い し た い し た い し た い た た い し た い た た い た し し た し た し た し た し た た い し し た し た し た た し し た し し し た し し し た し し し た し し た し し	(1) PIL(自民、日田八一(丁田央座) その活性を向上させるためのタンパク質工 多くは、置換の種類や組み合わせが膨大 な時間を必要とする非効率的なものが多 は、酵素活性の向上に関わる残基置換の と情報処理によってルールとして抽出し、さ 酵素を効率的にデザインする新規手法の た。 研究では、2-deoxyribose-5-phosphate RA)と基質との相互作用が考えられる4部 (8, 239位)において、アミノ酸の変異 DNA クリーニングした。結果得られた40個の変 5残基置換の組み合わせを物理化学的な 換し、知識情報処理手法の1つである Network (FNN)を用いて、組み合わせル		【及伴分ッ塩研に【系酸と(一テ半応 り遺需系酵素原はリ本用)アのるなす にい解酵素でし、本用)アのるなす になり、 のでし、 し、 に のでし、 、 い解酵素でし、 本用)アのるの で し、 し、 の の の の の の の の の の に の に の の の の に の	オキシリボヌクレオシド(dNS)は PCR の普 音療の開発、核酸系抗ウィルス剤の開発に な大が予想されている。我々はヌクレオシド 洋と解糖系をカップリングさせたマルチステ による、グルコース、アセトアルデヒド、核酸 さする dNS 合成法の開発を試みている。本 達素となるホスホペントムターゼ(PPMase) 酸化合物助性酵素の開発を試みた。 S 生産プロセスは、パン酵母の ATP 再生 らグルコースからのフルクトース 1.6-二リン 等導、デオキシリボアルドラーゼによる FDP デビドからの 2-デオキシリボース 5-リン酸 成、PPMase およびヌクレオシドホスホリラ RSP と核酸塩基からの dNS 合成、の 3 ス る。この生産プロセスにおいて、プロセス前 て を田 オス そこでサウは dNS 生意しま

D-16	超好熱性古細菌由来プレフォルディン による有機溶媒耐性の向上 〇蟹江彗 栗木昌樹 大河内美奈 (名		D-18	グルタミン酸デカルボキシラーゼのバイ オインフォマティクス解析と血球での C 末領域異常タンパク質の発現解析
	古屋大・エ)、本多裕之(名古屋大・エ、			良女大·院·食物)
【目が応して、 して、 したでは したで したで したで したで したで したで したで したで	名大予防早期医療センター) 一般を用いた物質生産は、常温常圧で反反応ステップも短縮できることから、化学 への応用が期待されている。疎水性基質 に水二相系システムが有効であると考えら 物が有機溶媒に対して耐性を持つことが な研究では、分子シャペロン関連遺伝子 媒耐性メカニズムへの効果を検討した。		【目的】高等4 ゼ(GAD)は, 酸(GABA)の 遺伝子産物で れており,脳れ ムが同時に発 くの疑問が投 オーム間の相	生物由来のグルタミン酸デカルボキシラー 抑制性神経伝達物質であるγ-アミノ酪 つ合成を担う酵素である.二種類の異なる であるアイソフォームの存在が明らかにさ などでは、同一細胞に両方のアイソフォー き現することより、局在性・活性制御など多 げかけられている.当研究では、アイソフ 目同性、イントロンとエキソンの位置関係、
【方機 有機 作定常与シシン で 30 で 30 で 30 で 低 した	溶媒に接触後の遺伝子発現解析により、 注に関与する遺伝子群の抽出・耐性株の てきた。本研究では、遺伝子発現解析で き現した遺伝子群に細胞のストレス応答に ・シャペロンが多く見出されたことから、分 関連遺伝子を大腸菌に導入した。これら 導入株を、有機溶媒を重層した寒天培地 培養し、コロニー形成率により有機溶媒耐		立体構造上で フォマークス 病の異常で見た の見常でした れているが、 に れているが、 お に た い で 、 に の に の に の に の に の た の に の た の に の た の に の た の に の た の に の の に の の に の の に の の に の の に の ら っ の の に の ら っ の に の ら っ の に の ら の に の ら の に の ら の に の ら の に の の に の の に ろ の ら の の に の ら の に ろ の に ろ の に ろ の に ろ の ら の に ろ ろ の ら の ら ろ ろ の ら ろ の に ろ ろ の ら ろ ろ ろ ろ の ら ろ ろ ろ ろ ろ ろ ろ ろ ろ ろ	でのエキソン部位などの解析をバイオイン 手法を用いて行った.また,GAD は糖尿 支抗原タンパク質であり、タンパク質として う有無に関して注目されている.胎児期で ハング異常による GAD25 の発現が報告さ その他の報告はまだなされていない.今 けるGAD発現の解析を行ったので、その ・て報告する.
【結果】 を Pyrococcus h 子湾、入株にになった なんたいのプログロントでは、 たいのプログロントでは、 かられたののプログロントでは、 たいのプログロシントのでは、 しいでは、 たいのプログロシントロントので、 といいのでは、 しいいのでのでは、 しいいのでのでは、 しいいのでのでは、 しいいのでのでは、 しいいのでのでは、 しいいのでは、 しいいのでは、 しいいのでのでのでは、 しいいのでのでは、 しいいのでのでのでのでは、 しいいのでのでは、 しいいのでのでは、 しいいのでのでは、 しいいのでのでのでは、 しいいのでのでは、 しいいのでのでのでのでは、 しいいのでのでは、 しいいのでのでは、 しいいのでのでのでのでは、 しいいのででは、 しいいのでのでのでのでは、 しいいのでのでは、 しいいのでのでのでのでのでは、 しいいのでのでのでのでのでのでのでのでいいのでのでのでのでのでのでのでのでのでの	限環境で生育する、超好熱性古細菌 orikoshii OT3 由来プレフォルディン遺伝 Sivて、有機溶媒耐性の向上が確認され が加3時間後の細胞内へキサン濃度を測 プレフォルディン遺伝子導入による有機 量が減少した。更に、シャペロン活性の低 tルディンN末、およびC末欠損変異体を な媒耐性を評価した結果、耐性の向上は 野性株のプレフォルディン高発現株のみ た。以上のことから、プレフォルディンの ン活性により、有機溶媒耐性が向上したと		されてい らた にい らた と ト き blot, RT-PCR した 、 モ キ 考 の 相 の 「 本 ろ の 間 れ い で の 相 の 「 や て の て の に ち 考 家 】 ン 1 ~ 3 の の 相 の バ い で の し の 、 ち 考 の 相 の バ い で の で の で の で の で の て の で の て の で の て の て の て の て の で の て の で の て の で の て の に い て い て の て の で の て の に い し い て い て の に い て の に い て の に い て の に い こ で の に い こ で の に い こ て の に い こ て の に い こ で の に い こ て の に い こ て の に い こ て の に い こ て の に い こ て の に い こ て の に い こ て の に い こ て の て の で の に て つ こ て の て の て の て の に い こ て の て の て の て の に い こ て の て の て の て の て の に い こ て の て の て の て の て の て の て の て の て の て の て い し い て て の て の て の て の て の て の て の の て の て の て の て の て の の て の て の の つ て の て の て の の て の て の の て の て の の て の の つ の て の の の て の て の の て の て の し い て の の て の の て の し い て の て の の て の て の て の て の て の て の て の の の つ て の の つ の つ の つ の の て の の つ つ の の の て の て の の の つ の つ の の の の の の	ールを用いて、グノム時前 福未を基にして 日本の血球から、単球を取り出し、Western により GAD の発現を解析した。 GAD は 16 のエキソンより構成され、エキソ 同性は低い. アイソフォーム間でイントロン は保存されていた. 末梢血では、30 と 80 が GAD65C 末領域を認識する抗体により で確認された. GAD65/67C 末認識抗体で , RT-PCR 解析の結果、GAD65C 末特異 ピトープ領域は増幅されたが、GAD65/67 ぎきなかった. エキソン 15 と 16 の境界に前 プが位置することより、発現タンパク質の C キソン 16 が欠損している可能性、つまり、
			組織特異的ス	マライシング異常を示唆する.
	降圧作用短鎖ペプチドのペプチドインフ	.		
D-17	オマティクスによる活性向上 〇加藤竜司、加賀千晶、冨田康之、大 河内美奈(名古屋大学工学研究科)、 本多裕之(名古屋大学工学研究科、名 大予防早期医療センター)、国松己歳 (名古屋女子大学)		D-19	 無細胞蛋白質合成系を用いた Burkholderia cepacia 由来リパーゼの基 質特異性の改変 〇合田陽平、山﨑浩子、加藤且也¹、中 野秀雄(名大院生命農、¹産総研)
【困乎的な率術れドを情よ 目難ドな探がでてで阻報な りはや探索非解いる害処 、 りはや探索非解いる害処 、 た で て 術 る す 理 プ 、 物 基 わ ク 后 解 と の に や げ チ に 、 来 約 に の に や 探索非解いる る す 理 プ 、 次 類 基 わ の に ぞ 形 、 来 み ら 昭 て ド チ ー 結 、 い や に 、 ス の に や が で て で 阻報 な た 、 方 の に や 探索非解いる る す 理 プ 、 方 の に や に 、 来 み ら の て に を ド 、 、 、 、 、 、 の こ 、 、 の に 、 、 、 、 、 、 、 、 、 、 、 、 、 の に 、 、 、 、	な機能的ペプチドの探索における最大の 類のアミノ酸の組み合わせ数が長鎖ペプ デミノ酸の利用に応じて膨大となり、実験 である点である。このような非効率で しため、実験データを情報処理技 にとで飛躍的に効率化する技術が求めら 研究では、昇圧作用を持つ生体内ペプチ otensin II (AngII)に結合し、その生体内ペプチ otensin II (AngII)に結合し、その生体内ペパン がっため用いて、VVIVIY 配列を元に パプチドライブラリをスクリーニングし、その 残基置換効果の高いアミノ酸を網羅的に デザインランダムライブラリー3360 配列を ニングした。その後、その結果を踏まえて 列群の特徴をFuzzy Neural Networkを用 iし、ルール抽出し、ルールに沿ったペプ 56種類合成し、目的の機能性を持ったペ 率の向上を確認した。 6mer を網羅する 6400 万種類の配列の 分の1のサイズのスクリーニングを行うだけ にのAng II 結合ペプチドが 60 個以上得 エムるスクリーニング方針の複数回の修正 ニング効率を大幅に向上する効果があっ		【背景・目的】B はかるの時で、 すのpionic acid デラインがある。 「「一方成テム、SIMI をかって、 ので、 ので、 ので、 ので、 ので、 ので、 ので、 ので、 ので、 ので	urkholderia cepacia KWI-56株由来のリパーゼ 有機溶媒性に優れているため産業利用が期待 あるが、光学活性化合物である 2-phenyl ester に対しては十分な加水分解活性および光 さない。そこで本研究では、本リパーゼの変異 構築し、2-phenyl propionic acid ester に対する 活性ならびに光学選択性を保持した変異リパ を試みた。 気に我々は、一分子 PCR 法と無細胞蛋白質 合わせて変異蛋白質ライブラリーを構築するシ PLEX (Single-Molecule-PCR-linked <i>in vitro</i> 引発した。このシステムで構築した変異ライブラ 9系では発現の難しい蛋白質でも迅速に合成 活性などを指標としてスクリーニングできる点 する。本研究では、リパーゼと対象基質の複合 から、変異導入部位を疎水性ポケット内の 4 箇 基に絞り込み、それぞれを9 種類の疎水性アミ こ置換した変異ライブラリーを SIMPLEX により としたライブラリーを(S)-体基質に対する分解活 スクリーニングを行った結果、(S)-体に対して 生を示す変異リパーゼを得ることに成功した。

	各種リパーゼに クフィルム(PBS	よる生分解性ブラス とPBS/A)の分解	スチッ		DNA のビーズディスプレイ法を用いた DNA-転写因子間相互作用検出法
D-20	山根恒夫、O豊 幸代、中原勇一 学部)	∃田好美、加藤歩、 ─(中部大学 応用	山根 生物	D-22	〇橋本陽子 ¹ , 兒島孝明 ² , 加藤雅士 ¹ , 小林哲夫 ¹ , 中野秀雄 ¹ (¹ 名大院・生命 農, ² 阪府大院・理)
【PB/A」、「「「「」」」」」。 「PB/A」、「」、「」、「」、」、「」、」、「」、」、「」、」、「」、」、「」、」、	解こので、 解こので、 ないため、用や 「 たいしたで、 たいいのたで、 たいしたで、 たいいのたで、 たいしたで、 たいいのたで、 たいしたで、 たいいのたで、 たいしたで、 たいいのたで、 たいしたで、 たいいのたで、 たいしたで、 たいいのたで、 たいしたで、 たいいのたで、 たいしたで、 たいいのたで、 たいしたで、 たいいのたで、 たいしたで、 たいいのたで、 たいしたで、 たいいのたで、 たいしたで、 たいいのたで、 たいしたで、 たいしたで、 たいしたで、 たいしたで、 たいしたで、 たいしたで、 たいした、 たいしたで、 たいした、 たいしたい、 たいした、 たいした、 たいした、 に、 し、 一解順いいい、 に、 いし、 いし、 いし、 に、 いし、 い に、 い し、 に、 い し、 に、 し、 い し、 に、 い し、 に、 し、 い し、 に、 し、 い し、 に、 し、 い し、 に、 し、 、 、 、 、 、 、 、 、 、 、 、 、 、	PEついたので、 PEついたので、 PEついたので、 PBS/Aのの本と性とうれる たいで、 PBS/Aのの本と性とした。 たいで、 PBS/Aのの本と性として、 PBS/Aのの本と性として、 やせる後、一位を必要したしたでしいで、 でで領域酵子のので、 がに同志を一て、 たいので、 でで領域酵子の、 のの本と性とした。 たいので、 たいので、 でで領域酵子の、 のの本と性とした。 たいので、 でで領域酵子の、 のの本と性とした。 たいので、 でで領域酵子の、 のの本と性で、 、 位をが、 でで領域酵子の、 のの本と性で、 でで領域酵子の、 のの本と性で、 でで領域酵子の、 のの本と性で、 でで領域酵子の、 のの本と性で、 、 位を、 たいので、 でで領域酵子の、 のののより、 でで領域酵子の、 のののとし、 でで領域酵子の、 のののと、 でで領域酵子の、 ののの、 に、 たいので、 でで領域酵子の、 ののの、 でで領域酵子の、 ののの、 に、 でで領域酵子の、 ののの、 でで、 でで、 でで、 でで、 でで、 でで、	B軟結解はの解ら解(微を濃く測直量)、にBN)、ぼとい(置り降)と質合酵各フとイ法(生求度分定接を(酵はAカ)濃なム)に5素	【目的】本研 デルジョン PCR リーをR プ ルジョン PCR リーを化 の を 化 し いジョン PCR リーを 化 の で れ の で れ の の で れ の の で れ の の で れ の の で れ の の で れ の の で れ の の で の の い 切 切 の ら 、 の の で れ の の の の で の の い 切 で の の い 切 で の の 切 の う い 切 で の の 切 の の の で で の の で で の の で で の の で で の の で で の の で で の の で で の の で で の の で の で の で の で の で の で の で の で の で の の で の で の で の で の で の で の で の で の で の の で の の で の の で の の で の の で の の で の の で の で の で の で の の で の の で の の で の の で の で の の で の で の の で の の で の の で の の で の の で の	E室では、W/O エマルジョン内でビーズ固 ライマーを用いて行なう一分子 PCR(エマ)により、マイクロビーズ上に DNA ライブラ する技術を開発し、これを用いてメタノー ⑤ Paracoccus denitrifcans ゲノムライブラリ nitrifcans 由来の転写因子 PhaR の新規結 私に成功している。 、糸状菌 Aspergillus nidulans の転写因子 を取り上げ、系の確立とともに、AmyR が A 配列を明らかにすることを目的としてい spergillus nidulans 由来の転写誘導因子 spergillus nidulans 由来の転写誘導因子 に結合し、転写を活性化する。 エマルジョン PCR により、マイクロビーズ と固定化した。次に、MalE タグを付加した るよび蛍光標識した抗 MalE タグ抗体を加 転写因子の認識する DNA が固定化され では、ビーズ-DNA-転写因子-蛍光標識抗 が形成される。この蛍光を有するビーズ複 を用いて迅速に選択し、AmyR のターゲ 宿されることを確認した。
	ポリ乳酸用の非	可食性植物度 100)%の		表面プラズモン共鳴を用いた、核内受
D-21	ポリ乳酸用の非 改質剤 山根恒夫・O宇 物)、浜口隆司 (株))、高木康な	可食性植物度 100 佐美厚(中部大応]・堀ともみ(伊藤 推・朝日真澄(名工者	0%の 用生 製油 研)	D-23	表面プラズモン共鳴を用いた、核内受 容体 LXR の新規リガンドスクリーニング 法の確立 ○長尾匡型 ^{1),} 車炳允 ²⁾ ,米澤貴之 ²⁾ ,永井 和夫 ^{1,2)} ,禹済泰 ^{1,2)} ¹⁾ 中部大院応用生物, ²⁾ 中部大学生物機能 開発研究所
D-21 【目、市岡の市のの して、市町 の して り の た の た の た の た の た の た の 市 の の で の の の の の の の の の の の の の の の	ポリ乳酸用の非 改質剤 山根恒夫・〇字 物)、浜口隆東 (株))、高木康 (株))、高木康 は性ざが弱いたない。本由で の が弱いたない。本由来 の の 学後、植物とした。	可食性植物度 100 佐美厚(中部大応 使事ともみ(伊藤 1・堀ともみ(伊藤 4・朝日真澄(名工 1、物性をもってい 地物プラスチック) 2、 、柔ートなどの分 名では、ポリ乳酸の の原料から作り出っ 「懸念される食糧間 であるヒマシ油を利	9% 用製研るしま野軟ご題用 たてたで質とをし	D-23 【目的】核化学 世後や発ータン料 での 総合 の 総 て た て の 総 た の 総 て の 総 で の 総 で の 総 で の に と の に で の に の に の に の に の に の に の に の に の	表面プラズモン共鳴を用いた、核内受 容体 LXR の新規リガンドスクリーニング 法の確立 の長尾匡則 ¹⁷ , 車炳允 ²⁷ , 米澤貴之 ²⁷ , 永井 和夫 ¹²³ , 禹済泰 ¹²³ ¹⁹ 中部大院応用生物, ²⁹ 中部大学生物機能 開発研究所 姿容体のリガンド活性の評価法は、生物活 時性質の評価に大別される。我々は、標 さず直接かつリアルタイムにLXRとコアク 合・解離の強弱と速度を測定できる表面 鳴を利用して、LXR リガンドを物理化学的 スクリーニングする手法を確立するために った。 には、Biacore3000 (BiacoreAB, Uppsala,
D-21 【り、市衝応の日慮改法酸金利(19年7年) 「「「「「「」」」」 「「」」」 「「」」」 「」」 「」」 「」」 「」」	ポリ乳酸用の非 改質剤 山根恒夫・〇字 物)、浜口隆市 (株))、高 た ででででででです。 (株))、高 た でででででででです。 が期にため、こ本研究 でのがあっていなを に、の が弱いたなな植物にした。 で、 の で、 の で、 の で、 の で、 の で、 の で、 の で、	可食性植物度 100 在美厚(中部大応 了体集ともみ(伊藤]・堀ともみ(伊藤 進・朝日真澄(名工 10、秋一月2000) (本物プ学ス中上などの分 の原念さいでし、ポリ乳酸の が懸念るヒマシ油を利 ためるためにた。 合成した。合成 し、ブレン のまた、HyCaLa 自 こより判定した。	9% 用製研 るしま野軟す題用 オクレド体の 生油 たてたで質とをし リチた体の	D-23 【目的】核内弯 性と物発色を介 チベーチンモロから で が た 法】】 を イ に た 法】】 を 行 に た を の た に と の た の た の た の た の た の に と の た の た の に と の た の た の た の た の た の た の た の た の た の	表面プラズモン共鳴を用いた、核内受 容体 LXR の新規リガンドスクリーニング 法の確立 の長尾匡則 ¹⁷ , 車病允 ²⁷ , 米澤貴之 ²⁷ , 永井 和夫 ¹² , 高済泰 ¹²¹ ¹⁰ 中部大院応用生物, ²¹ 中部大学生物機能 開発研究所 2容体のリガンド活性の評価法は、生物活 さず直接かつリアルタイムにLXRとコアク 合・解離の強弱と速度を測定できる表面 鳥を利用して、LXR リガンドを物理化学的 スクリーニングする手法を確立するために った。 には Biacore3000 (BiacoreAB, Uppsala, 目いた。ヒトの p160 Steroid Receptor いペプチド (aa.676-700)をビオチン化したも チップ SA に固定化し、試験化合物と (aa.207-447)の混合液を DMSO が終濃 うに調製してアナライトとして添加した。対 XR アゴニストである T0901317 (Cayman と 用 い た。チップの 再 生 に は

	酵素処理で得られた低線維形成能 コラーゲン会合体の勢安定性		ニワトリ初期胚卵黄血管系におけるレニン・ アンジオテンシン系構成因子の遺伝子発現
E-1	○ 國井沙織 ¹ , 柴野三智子 ² , 齋藤卓也 ¹ , 外村辨一郎 ¹ , 森本康一 ¹ (¹ 近畿大院・生物工, ² 近畿大・医・細菌)	E-3	〇中田智子 ¹⁾ 、渡部加予 ¹⁾ 、村松講子 ²⁾ 、鈴 木文昭 ¹⁾²⁾⁽¹⁾ 岐阜大・院・農・生物資源生 産、 ²⁾ 同応用生科・食品生命)
【目的】I 型コラ	ーゲンは、結合組織に含まれる最も豊富に存		
在するタンパク 構造を形成する については,未 チニダイン(cys ン(A-Col)の線; 表では,示差走 ーゲン(P-Col)名	質であり,生理的条件下で自己会合して線維 5.しかしコラーゲン線維形成の分子メカニズム まだ不明な点が多い.我々はこれまでに,アク teine peptidase)で限定加水分解したコラーゲ 維形成能が低下することを明らかにした.本発 室熱量計(DSC)測定により,ペプシン処理コラ 会合体とA-Col 会合体の熱転移温度やピーク	【目的】レニン・ ンジオテンシン を促進すること 注目されている いて両者の問 Hamilton Stage 構成因子のm することを目的	アンジオテンシン(RA)系の最終産物であるア II は、血管内皮細胞増殖因子の遺伝子発現 が報告され、RA系と血管新生との関係が最近 5。本研究は、ニワトリ初期胚卵黄血管系にお 週係を解明するために、まず Hamburger e(HH)17における卵黄血管系におけるRA系 RNAの存在およびそれらのレベルを明らかに とした。
形状を比較する 知見を得ること。 【方法】ニワトリル 抽出し、それぞ 分子と会合体の DSC 測定した DSC 測定条件	ることで,高次構造の差異から生じる熱力学的 を目的とした. 支部から常法により酸可溶性 I 型コラーゲンを れ P-ColとA-Colを調製した.各コラーゲン単 D熱安定性を調べるため,pH 4.0とpH 6.5 で .また,測定前の静置時間の影響を調べた. におけるコラーゲン会合体の高次構造の形態	【方法】ニワトリ ³ 養した。将来薬 慮して、卵黄血 た。添加後 0.5 管系のみを採用 常法にしたがい って RAS 構成	受精卵を常法にしたがって HH 17 まで転卵培 剤添加のコントロールとして評価することを考 管系に PBS 100 μl を添加後さらに静置培養し 時間から 2.5 時間まで、0.5 時間ごとに卵黄血 反した。採取サンプルをホモジナイズしたのち、 MRNAを抽出し、RT-リアルタイム PCR 法によ 因子の mRNA を定量した。
を走査型電子駅 【結果】単分子 ルピーク(44℃ DSC曲線(pH 6 P-Col会合体で 合体でのピーク ーション時間は 明らかになった	項微鏡(SEM)により観察した. 伏態(pH 4.0)の A-Col の熱転移曲線はシング いであり、P-Col と一致した. A-Col 会合体の 5.5)では、2 つのピークが認められたのに対し、 ぎは主に1 つのピークが示された. さらに、両会 7形状に顕著な違いが検出された. インキュベ た、高温側のピーク形状に影響を及ぼすことが . また A-Col 会合体は、I型コラーゲンの特	【結果】卵黄血 ジオテンシノー 酵素(ACE)、ア プ2(AT2)受容 てが検出および その中で高 度が AT1、AT2 時間内における PRR は有意な AT1 AT2 受な	管系において、RA 系構成因子すなわちアン ·ゲン(AngN)、レニン、アンジオテンシン変換 ·ンジオテンシン II タイプ 1(AT1)受容体、タイ ·体、(プロ)レニン受容体(PRR)mRNAのすべ が定量された。 農度に存在したのが AngN、ACE、PRR、中濃 2、最も低濃度がレニン mRNA であった。測定 5各 mRNA 量の変動は、AngN、ACE および 2.増加または減少がみられた。一方、レニン、
倒 じめ つ 縁 維 ポ の 結 果 よ り, ア / 性 変 化 を とも な	が成前の低下か SEM により観察された. 以上 カチニダイン処理はコラーゲン会合体に熱安定 う高次構造変化を引き起こすと推察された.	以上より、HH 1 構成因子の mI	7のニワトリ初期胚卵黄血管系におけるRA系 RNA動態が観察できた。
E-2	A dipeptide YY derived from royal jelly proteins inhibits the renin activity. OAfroza Sultana ¹⁾ , A.H.M. Nurun Nabi ² , Uddin M. Nasir ² , Hiroe Maruyama ³ , Kazu-michi Suzuki ³ , Satoshi Mishima ³ , and Fumiaki Suzuki ² ¹⁾ (¹⁾ United	E-4	DNAトポイソメラーゼのノックダウンによ る中心体複製への影響 の水品善之、吉田弘美(神戸学院大・栄 養・食品栄養、神戸学院大・ライフサイ エンス産学連携研究セ)
	Graduate School of Agric. Sci. and ²⁾ Fac. Appl. Biol. Sci., Gifu University, ³⁾ Nagaragawa Res. Ctr, API Co. Ltd.)	【目的】 中心体(centr り、分裂期に ための分裂中	osome)は動物細胞の細胞内小器官であ おいて娘細胞への染色体の均等分配の 心のはたらきをする。癌遺伝子抑制産物 の複製を抑制的に調節している DNA の
Objective: Reposses the an ACE in the system. In the inhibition of dispertice VV	by a lightly has been recently reported to tihypertensive effect by the inhibition of spontaneously hypertensive rats (SHR). key enzyme in the renin angiotensin this study, we investigated the renin royal jelly protein and its derived	ねじれを巻き IIα)をノックダ p53 欠損細胞 【方法】 p53 、とp53 ス topo I、top	戻す DNAトボイソメラーゼ I、IIα(topo I、 ウンさせることによる中心体複製の影響を ・野生型細胞を用いて調査した。 ^{-/)} のマウス繊維芽細胞(MEF cells) ヘマウ po IIα の siRNA ベクター(pSUPER)を
<i>Methods</i> : A c fraction of ro renin activity angiotensinos conditions.	dipeptide YY was isolated from digestive yal jelly protein fraction by HPLC. The was measured using recombinant sheep gen at pH 7.0 under the standard assay	FuGENE 6を として 10 分の た。48 時間 戦鏡で観察し anti-topo I、ar 抗体で染色し 染色した。	使用して transfection した。positive control り1 量の GFP-C1 ベクターを同時に添加し 音養後の細胞を免疫染色してから蛍光顕 た。その際に topo I、topo IIα の発現量は nti-topo IIα 抗体で、中心体は anti-γ-tublin て測定した。細胞核については DAPI で
Results and activity were dipeptide Y angiotensinog 10 μM. Besi systolic blood administratioo approximatel	Conclusion: Inhibitory effects of renin observed by the protein fraction and Y. The Km value of the substrate; gen was 0.15 μ M and the Ki of YY was des this, the dipeptide YY showed the d pressure lowering ability after the oral n of it (10 mg/kg) in the SHR by y 12 mmHg.	【結果】。 (1) p53 ^(+/+) M p53 ^(+/+) MEF (見られなかっ) 心体の異常 (2) p53 ⁽⁻⁾ MEF (2) p53 ⁽⁻⁾ MEF (若千見Sれた 体の異 常複	EF cells について cells は、それ自身に中心体の異常複製は た。topo I, topo IIa によるノックダウンで中 夏製が見られなかった。 EF cells について cells は、それ自身に中心体の異常複製が 。topo I, topo IIa によるノックダウンで中心 いが増加した。
Therefore it could be anti-hyperten complications	can be assumed that the dipeptide YY beneficial for the supplement of sion and prevention for its related s.	【	×複製を制御・調節していることが知られて 活性を阻害することで DNA 損傷を招き、 ፪延することで中心体の異常複製を引き起 いる。

		i i	1			
- -	Acetogenin 類の DNA ホリメフーセ、トホ イソメラーゼ阻害活性とヒト癌細胞増殖 抑制活性			皮膚符 (TGase	異的トラン♪ 1)の高反応	くクルタミナーセ 生基質配列の同定
E-5	〇米澤裕子 ¹ 、水品善之 ^{1,2} 、吉田弘美 ^{1,2} (¹ 神戸学院大・栄養、 ² 神戸学院大・ライ フサイエンス産学連携研究セ)		E-7	〇細野 柴田秀 生命農	真代、杉村禎 樹、牧正敏、 応用分子生	[昭、北村三矢子、 人見清隆(名大院 命科学)
【目物から 「 植免ぞの」 (1) (1) (1) (1) (1) (1) (1) (1)	マサイエンス産学連携研究セ) genin 類は、パンレイシ科の熱帯・亜熱帯 された脂肪酸誘導体であり、抗癌活性や とが報告されている。各種 Acetogenin 類と と有機化学合成して、DNA ポリメラーゼ メラーゼ (topo) の阻害活性とヒト癌細胞 について調査した。 genin 類は、mucocin (1), jimenezin (2), ezin (3), muconin (4), pyranicin (5), (6), 10-epi pyragonicin (7), nethyl-2-tetradecyl-4-butanolide (8)の8物。pol と topo 阻害活性は常法に従った。ヒ (HL-60 cells) の増殖は MTT 法で測定 <u>5活性:</u> Acetogenin 類 8 物質のうち が最も強く哺乳類由来 pol を阻害した。 ¹⁾ の中では pol λ に対する阻害が最も強く、 <i>u</i> M であった。 <u>活性:</u> pyranicin (5)はヒト由来の topo I およ 阻害した。IC ₅₀ 値は 5.0 μ M、7.5 μ M であ 見着殖抑制活性: Acetogenin 類の細胞毒 喜活性と同じ傾向を示し、pyranicin (5)が した(LD ₅₀ 値 = 9.4 μ M)。 (5)の HL-60 への影響:細胞周期を G2/M 期で停止させた。['H]-thimidine の取り込 ことから DNA 合成を阻害することが示唆 の断片化が見られたことからアポトーシス 考えられた。 <i>et al.</i> (2007) <i>Lett. Drug. Design Discov.</i> 4, 239-245.		[レンミ等ク開考ド固配Tク与でな目提にたしり定めプ解ミ質列一異() りのクを物中すらブ第列3質しあい的示よ。、返しらチ析ンとがつ体と 質共にのるれうJII同5架るれた、しめたれドしのしてをを すれに特たる。をしてとて、本したビビ腸、、た配た取てG選作 い、本したビビ腸、、た配た取てG選作 のの新8定めま、そ研た。フオジ菌選そ、のの、10製 (1)製(1)、 のののの10製(1)、	、女告つで、、我用子すちょうで方一ン見感が苦1含光々応対、てまた、クレックをついて、我用子すちょうで方一ン見感が苦1含光々応対、てまった、クルシのグですいそんです。 、そのが、それ、それ、など、「ない しんしょう しょう しょう しょう しょう しょう しょう しょう しょう しょう	応 、成でザシ回し2(れ系町事イシー果レ級町Cジャでえたり討い酸のの 「用 一基架イ残列に組にを胞にソ基の]タアし幅提配をンア他た異残化 に、 一子 、、 、、 、、 、、 、、 、、 、、 、、 、、 、	命相学) 「TG とまえ、 「TG とまえ、 「TG とまえ、 「TG とまえ、 「TG とまえ、 「TG とまえ、 「TG とまえ、 「TG となんし、 「TG となん、 「TG になった。 「一でタン応るプ液基」 「TG になった。 「一でタン応るプ液基」 「TG になった。 「一でタン応るプ液基」 「TG になった。 「本本型」 「TG になった。 「本本型」 「TG になった。 「一での 「たるんた。 「して、 「TG に、 「TG に、 「本本型」 「TG に、 「本本型」 「一での 「一での 「一での 「一での 「一での 「一での 「一での 「一での 「一での 「一での 「一での 「一での 「一での 「一での 「一での 「一での 「 「 「 「 「 「 「 「 「 「 「 「 「

	トランスグルタミナーゼは動物細胞での 物理的傷害の修復に必要である		高脂肪食摂取下において作用する2型 糖尿病遺伝子の解析
E-6	〇河合良樹、和田文孝、杉村禎昭、柴 田秀樹、牧正敏、人見清隆 名大院・生 命農・応用分子生命科学	E-8	O星野宏美 ¹ 、小林美里 ² 、岩井宏至 ² 、 村井篤嗣 ² 、西村正彦 ³ 、大野民生 ³ 、森 山龍一 ¹ 、堀尾文彦 ² (¹ 中部大・応用生 物、 ² 名大院・生命農学、 ³ 名大院・医)
「ナタ成酵多モるをとよての養いるえす添う制いし入考阻発抑たて害(目ーンを素彩デ物明しる検上皿て蛍たる加ちさたて株察害現制細いか1 的ゼパ触反なル理らて架討皮で傷光後方に組れ場、を」剤抑株胞たら) 」(ク媒応生下的か物橋し系増つでに法よ織る合現樹物を削に株。のWad のU質しは命等なに理反た細殖け層修をる型遺の現立理添株遺でこ修ね	、「G」になった。 「G」には、 「G」には、 「G」には、 たって、 「G」には、 たって、 「G」には、 たって、 して、 して、 して、 して、 して、 して、 して、 し	【目作はKAA伝をる責限方化出産本を立て、 「新た防之精も導かりとジジジーではあって、 「新た防之精も、 「新た防之精も、 「「「「「「「」」」」 「「」」」 「「」」」 「」」」 「」 「	病を呈さないマウス SM/J 系統とA/J 系統か SMXA-5 系統は糖尿病を発症し、この病 食摂取により増悪される。我々は、 2 番染色体に高脂肪食摂取下で作用する 尿病遺伝子座 T2dm2sa を検出し、この遺 A/J 由来の2 番染色体領域(約 120Mb) 入したコンジェニック系統が糖尿病を呈す いにしてきた ⁽¹⁾ 。本研究では、T2dm2sa の う同定を目指して、T2dm2sa の存在領域を を自わとした。 ェニック系統の A/J 由来染色体領域を断 を有するサブコンジェニック系統を7 種類 のうち、2 系統(R1A、R2A)を用いて高脂 での糖尿病形質を SM/J と比較検討した。 マウス同士の攻撃による表現型への影響 見性のあるデータを得られる飼育条件を確 、単独飼育による実験系を採用した。 R2A サブコンジェニック系統ではともに て、肥満度の上昇、脂肪組織重量の増加 では耐糖能の低下も観察された。これら A の持つセントロメア側の約 5.6Mb の導 巴満に関する遺伝子が存在し、R2A の持 の約26MbのA/J 由来領域には肥満・糖尿 気子が存在することが示され、2 番染色 の責任遺伝子が存在することが明らかとな M.et al., Diabetologia, 49:486-495 (2006)

E-9	核酸) 運物員の破育細胞分化に対す る影響 ○長谷川森一 ¹ ,米澤貴之 ² ,三浦信仕 ³ , 芦 田則之 ³ ,車炳允 ² ,永井和夫 ^{1,2} ,禹済泰 ^{1,2} (¹ 中部大院応用生物, ² 中部大学生物機能 開発研究所, ³ ヤマサ醤油株式会社)	E-11	 ネオーコテンイトとの選択的相互作用に 寄与するショウジョウバエ Dα2 サブユニ ット loop B 上流領域の構造因子 〇外島佳代子、金岡怜志、樽本潔、 David B. Sattelle[*]、松田一彦(近大院・ 農・応生化、*オックスフォード大)
[細閉骨阻は核阻す」下M破タ分B及EDカしに結細存作化性合と的絶経吸害骨酸害る方でCF1化化力の、果胞1.胞培用マに物しいに後収す粗関作核法、F細ゼを加ビ細ホ。果、1.心及養を一対してした、「たている たっていたい、F細ゼをから、「したをす」、F細ゼをしたし、果物1.し及養を一対して、粗合和原物を誘骨骨をの性価芽で用ター酸AMのも、1.100000000000000000000000000000000000	能と骨量は破骨細胞による骨吸収と骨芽 形成のバランスによって調節されている。 感症は、破骨細胞数の増加による過剰の 気で骨量が減少する。破骨細胞の分化を しては骨芽細胞の分化を促進する物質 した。その結果、破骨細胞分化を していた。その結果、破骨細胞分化を した。その結果、破骨細胞分化を した。その結果、破骨細胞分化を した。その結果、破骨細胞分化を した。その結果、破骨細胞分化を した。その結果、破骨細胞分化を した。その結果、な した。その結果、な した。その結果、な した。その結果、な した。その た の た の た の た の た の た の た の た の た の た	【は対は虫かし象選の方の、置いたいので、 していたい。 「「「「」」」 「「」」 「」」 「」」 「」」 「」」 「」」 「」」 「	ニコチノイド系殺虫剤イミダクロプリド(IMI) チン性アセチルコリン受容体(nAChR)に カにアゴニスト作用を発揮する。われわれ 、このような IMI の選択的活性に対して昆 ブユニット上では loop C ¹ 、および loop B かけての領域 ¹ が寄与することを明らかに コ、ショウジョウバエ Da2 サブユニットを対 ON 末端から loop B までの間で IMI との 作用に寄与する構造因子について調べた a4 サブユニットの N 末端から loop B ま oop C 領域に存在するグルタミン酸残基 Da2 サブユニットをプロリン残基に同時 メラαサブユニットをコードする cDNA を作 DNA をヒヨコβ2 サブユニットをコードする Cアフリカツメガエル卵母細胞の核にマイク ンョンすることにより、キメラ-ハイブリッド 見させた。キメラ・ハイブリッド nAChRのアを 見て IMI に対する応答は、膜電位固定法 生理学的に計測した。 a4 サブユニットの N 末端に挿入したショ Da2 サブユニットの N 末端に挿入したショ Da2 サブユニットの N 末端領域で ある段階を境にしてキメラ-ハイブリッド I に対する受容体の応答が顕著に変化し から、Da2 サブユニットの N 末端領域で 的相互作用に関わる領域を部分的ながら とができた。 et al., Neurosci. Lett. 363, 195-198 (2004). et al., Neurosci. Lett. 385, 168-272 (2005).
	│ 線中 Caeporhabditis elegans の細胞質		「ハイパーサーミアと免疫治療の併用]
E-10	遊離糖鎖の代謝経路の解析 の加藤紀彦、川原彰人、北村久美子、 前田恵 ¹ 、木村吉伸 ¹ 、片山高嶺 ² 、芦田 久、山本憲二(京大院生命、 ¹ 岡大院	E-12	効果 〇横地佐世子、伊藤範親、藤森彩圭、
	自科、 ² 石川県大·資源研)	目的我友	小林猛(中部大学 応用生物学部) + 東真知織のみを陸卑的に加温するた

E-13	La 熱 治 鴉 metalloprotein 細胞死滅促進 ○西村奈津孚 小林猛(中部)	₹ に お け る ase-3 (MMP-3)阻 、	matrix 害剤の 豪宗俊、	E-15	ゼブラフィッシュアディポネクチン cDNA のクローニングと発現および機能解析 〇上野明里,田中千絵,秦 健敏,秋 山真一,田丸、浩,青木直人(三重大 院・生資)
【目的】温熱は 温熱治療々お いる。より網 し、それ 目し、そ 月 し、 そ 指 し 、 そ 指 し 、 で に オ の の の の の の の の の の の の の の の の の の	こより誘導されるお うける細胞死を おはる細胞死を うはる細胞死を ういた。 たいより あず のにより 誘導 のにより 誘導 のにより 誘導 のにより 誘導 いた。 でんる やんで する やんで れて いる やんで やんで やんで やんで やんで やんで やんで やんで	に一トショックタンパ 印制することはよく知 される遺伝子を DN のである MMP- うことで温熱治療効 した機能性磁性 、交番磁界を開	のられていた。 のでは、 のでは、 ので、 がて、 のに、 がで、 のに、 がで、 のに、 がで、 がで、 のに、 がで、 のに、 がで、 がで、 がで、 がで、 がで、 がで、 がで、 がで	【目的】 ヒトとは ッシュを用い を探る手始め られるゼブラフ のクローニング	ほぼ同様なゲノムセットを有するゼブラフィ たメタボロームシンドローム研究の可能性 として, 善玉アディポサイトカインとして知 フィッシュアディポネクチン (zAdipo) cDNA ど発現・機能解析を試みた。
温す究ことで し 、 な こ た で し で 他 们 M M M ち た す し 、 M M M ち た で し で で っ で た っ で う た た う し 、 か れ の し い う ち た て し 、 か か し で で っ で っ で っ で っ で っ で っ で っ で っ で っ で っ で っ で っ で っ で っ っ で っ っ っ っ っ っ っ っ っ っ っ っ っ	エ	が温でき、46 Cま で完全に退縮できる MMP-3 阻害剤を ることを明らかにし ノーマ細胞を 6well outyl-N-(4-methoxy acid)を 0,1.3,4,8 µ acid)を 0,75,90 分 胞数を測定し、MM n vivo)マウス B16 ウスに注射した皮下	いっ が、 が が 、 dish u henylell か M/we 熱阻 ール メ モン ・ が い ト ・ い ト ・ い ト ・ い い し ・ い い ・ い い ・ い い ・ い い ・ い い ・ い い ・ ・ い ・ ・ い い ・ い い い い ・ い い い ・ い ・ い ・ い い い い い い い い い い い い い	【方法】 ヒトお bait として BL 遺伝子の同定 イマーを設計 子発現ベクタ 細胞に導入し により分画を、 てウエスタンで 現は RT-PCF	はびマウスアディポネクチン cDNA 配列を AST search を行い, ゼブラフィッシュ相同 Eを試みた。ヒットした配列を元に特異プラ し, RT-PCR により増幅後, 哺乳動物遺伝 ーにクローニングし, 培養下の哺乳動物 た。細胞溶解液, 培養培地を SDS-PAGE 、エピトープタグに対する特異抗体を用い ブロット解析を行った。各組織における発 はにより実施した。
で検討した。い り効用が後した。 に新した。 に新した。 に結加する に に 結加する した。 い に に 結加する した。 い に に 新した。 温 く MMP-3 に 日 る してい の で の の で の の で の の に 、 した。 に の の に 、 の の の に 、 の の の に の の に の の の に の の の の	MCL を 履湯的 43℃、30分間 (くは 24 時間後に これらを 3 日間 熟処理時間に関 とで 満細胞死を 満細 た。②通す くに 43℃ 5 6 6 6 6 6 6 6 6 1 1 1 1 1 1 1 1 1 1 1 1 1	に注射し、治療的に た)温熱療法を行った こ MMP-3 阻害剤を 行い、経過を観察し わらず MMP-3 阻 りに生細胞数が低 豊度依存的に誘導し この温熱治療では、 3 阻害剤を併用す 、 3 阻害剤を併用する 、 たこの に 5 限害剤を が 市 1 (1) 5 (は…腹た害下てほるれれ、め温腔。、剤しいぼ日とず増の温腔。剤しいぼ日とず増の熱内を、る全でで退殖	【結果】ヒトお。 ぞれ 46.5%, 4 ーニングした。 え、多量味形 いた。。多興味ず いた。の声のたって され, 量体, 六 った。	よびマウスアディポネクチンに対してそれ 8.3%の相同性を示す zAdipo cDNA をクロ ,コラーゲン様ドメイン, C1Q ドメインに加 成に必要なシステイン残基も保存されて いことに, zAdipo は脂肪細胞での発現が 脳,眼球,骨格筋,肝臓での発現が顕著 乳動物細胞で発現させると培地中に分泌 ヒトの場合と同様にシステイン残基を介し 量体,多量体を形成することが明らかとな
	表した こうちょう ちょうしょう ちょうしょう	ぷちをあった出す	可名接口		
E-14	 熱ショックタン 性を識別する 〇横山愛美、 風、谷史人、 	パク質の C 末端配 受容体の探索 西川慧、野村昌代 北畠直文(京大院農	列多様 、陶雨 晨•食品	E-16	ゼブラフィッシュ PAI-1 cDNA のクローニ ングと哺乳動物細胞における発現 〇田中千絵,上野明里,秦 健敏,秋 山真一,田丸、浩,青木直人(三重大
E-14 【目的】分子 Shock Protein 険シグナルや 質として neoplasm P38 分けるという	 熱ショックタン 独を識別する ●横山愛美、 風、谷史人、 生物) マペロンである ロンである アクレがってある ロンプ報ている。 38D1 細胞かにす とを明らかにす 	パク質の C 末端配 受容体の探索 西川慧、野村昌代 北畠直文(京大院 唐、一ショックタンパク 系 ショックタンパク 約 (一 ショックタンパク 約 (た) (た) (た) (た) (た) (た) (た) (列多様 雨 の の の の の の の の の の の の の の の の の の	E-16 【目的】ヒトとぼ ッシュを用いた を探る手始め られるゼブラ inhibitor-1)(能解析を試み	ゼブラフィッシュ PAI-1 cDNA のクローニ ングと哺乳動物細胞における発現 〇田中千絵、上野明里、秦 健敏、秋 山真一、田丸 浩、青木直人(三重大 院・生資) ほぼ同様なゲノムセットを有するゼブラフィ たメタボロームシンドローム研究の可能性 として、悪玉アディポサイトカインとして知 フィッシュ PAI-1 (plasminogen activator zPAI-1) cDNA のクローニングと発現・機 た。
E-14 【目的】 Shok Protein のかシ機としasm P35 ですたていべも注 Shoyを使きていたいです。 Fire and State ののける法子間チ合いのです。 Fire and State ののです。 Fire and State Sta	 熱ショックタン 熱ショックタン 性を識別する 〇磺山愛美、 風、物 ロンは、 ロンは、 シャペアクンは、 シャペアクンは、 シャペアクンは、 シャペアクンは、 シャペアクンは、 シャペアクンは、 シャペアクンは、 シャペアクンは、 シャペアクシンは、 シャペアクシンは、	パク質のC末端配 一次容体の深索 西川慧、(京大院 た) 一次で本の の探索 一方で 本目 一方での のに た) し) のに た) し) のに た) のに た) のに た) のに た) のに た) し) のた のに た) のに た) のに た) のに た) のに た) のに た) のに た) で に た) で に た) で に い た) で た) の で に た) で に た) で に た) で に た) で た) で た) で に た) で た) で た) で た) で た) で た) で た) で い た) で し) で た) で い た) で し) で た) で い た) で に で た) で し) で た う で に か 一 に か 一 で に う で た) で の た) で た) で た) で た) で た) で で た) で た) で た) で た) で で た) で で で た) で た) で た) で た) で た) で た) で で た) で で た) で た) で た) で た) で た) で で た) で で た) で で た) で で で で で た) で で で で で で で で で で で で で	列	E-16 【目的】とトとぼ ッシュを手がう を探るるモンブ に 前 い は が を 系 る て ブ フ に ト と に 、 を 振 い 、 を 手 が の を 手 が つ を 手 が つ を 手 が い 、 を そ 手 で う に ト と に 、 を に や に や に や に や に や に や に や に や に や に	ゼブラフィッシュPAI-1 cDNA のクローニ ングと哺乳動物細胞における発現 〇田中千絵,上野明里,秦健敏,秋 山真一,田丸浩,青木直人(三重大院・生資) ほぼ同様なゲノムセットを有するゼブラフィ たメタボロームシンドローム研究の可能性 として,悪玉アディポサイトカインとして知 フィッシュ PAI-1 (plasminogen activator zPAI-1) cDNA のクローニングと発現・機 た。 にびマウス PAI-1cDNA 配列を bait として hを行い,ゼブラフィッシュ相同遺伝子の た。ヒットした配列を元に特異プライマーを PCR により増幅後,哺乳動物遺伝子発現 ローニングし,培養下の哺乳動物細胞に 泡溶解液,培養培地を SDS-PAGE により トープタグに対する特異抗体を用いてウエ 外析を行った。各組織における発現は より実施した。

北アフリカ原産机 脂肪細胞分化に E-17 〇平野貴子 : 第 三重大院・生資,	^{重物由来抗酸化成分の 及ぼす影響 宮崎均²,青木直人「(¹ ²筑波大・北アフリカ研}	E-19	ヒト白血病細胞 HL-60 の様々な分化誘 導過程における細胞内 NADH 量の変 動について の緒方進、井田智恵利、小川瑠美子、
【目的】北アフリカの過酷な気候 何らかの抗ストレス機構を備え 方,肥大化した脂肪組織では、 ストレスが脂肪細胞の機能不全 れている。そこで今回我々は、、 製された抗酸化成分に着目し、 する効果を明らかにすることを目 【方法】脂肪細胞のモデルとして 用い、分化誘導時より北アフリン 各種抗酸化成分を種々の濃度 の蓄積量とアディポサイトカイン の発現・分泌量を分化の指標として による染色、リアルタイム PCR ま 法により定量した。 【結果】調べた9種の抗「 Hydroxytyrosol および Resverate 肪細胞への分化を阻害し、中性 抑制することが明らかとなった。 に詳細に検討したところ、分化記 おいて、添加した量に依存し Resistinの発現および培養培地 た。また PPARyや aP2(FABP4) 抑制された。	帯で生育する植物は, ていると考えられる。一 活性酸素種による酸化 を引き起こすことが知ら これら植物から単離・精 脂肪細胞の分化に対 的とした。 マウス 3T3-L1 細胞を か原産植物に由来する で添加した。中性脂肪 (Adiponectin, Resistin) ム,それぞれ Oil red O おびウエスタンブロット 酸 化 成 分 の 中 で, orlが 3T3-L1 細胞の脂 指脂肪の蓄積を顕著に 両成分に注目してさら 秀導後4日目,8日目に て Adiponectin および 中への分泌量が減少し の発現も用量依存的に	【病細前挙の面レニしれか際はのにっン回に【お様へリセのン逆主タし、 目細胞骨げ分抗ベコ、TRと、、NAOのにっと回に】お様へリセのン逆主タし、 目細胞骨げ分抗ベコ、TRと、、NAOに、によびな影役のに果ド減い外 目の性い誘でン々と定法DAの我細お分着結ニ条響役つ、で少の分析 研しる導致した、独るあ量めの内ぼ誘す】手に検をして、 のなりして、なるの内に誘すり、たいないない。 の方ははすで日た々的はです。	「空気」であった。ことに新規、ATCALE
ヒト白血病細胞 H	IL-60の分化誘導過程		ABCA1 と ABCG1 による脂質排出機構
	・酸関連化合物の併用 、緒方進、東川七瀬、 寛(三重大院 生資) タミン B 難に属するニ	E-20	の解析
コ理作用のたいで、 する手がに、 する手がに、 などの に 出した でで、 などの に 出した して、 などの に して、 などの に して、 などの に して、 などの に して、 などの して、 などの た の に して、 などの た る た の に して、 などの た る た の に して、 などの た る た の に して、 などの た る た の に して、 などの た る た の に して、 などの た の の の た の の の た の の の た の の の た の の の の た の の の の た の の の の の の の た の の の の の た の の の の の の の の の の の の の	物の長い、 物の長い、 からした。 ないたい、 ない、 ないたい、 ない、 ないたい、 ない、 ないたい、 ない、 ない、 ない、 ない、 ない、 ない、 ない、 な	【目的】ABCA でポリポタンパジ ジルコリン(PC) に ABCG1 が PC を排出する に富コレスの分 ることを引かい ることを引いた。 (方法】SM 合) の変異細細胞に 世を泡見した。 (若果】LY-A 現定した。 、 【お果】LY-A に 室でした の の 変異細胞に に 。 (若果】LY-A に 日 約 の で よ り の で よ り の た の の た い の の 行 る に る つ レ ステロー に の の 行 る に る つ レ ステロー に の の 行 の の に る つ レ ステロー の の 行 の の に る つ レ ステロー の の に る つ レ ステロー の の の に る つ レ ステロー の の の の の の の の の の の の の の の の の の の	1とABCG1はマクロファージを含む末梢細胞 を排出するABCタンパク質である。ABCA1が ク質 A-I(apoA-I)にコレステロールとホスファチ を排出し、生じた高密度リポタンパク質(HDL) さらにコレステロール、スフィンゴミエリン(SM)、 う。細胞膜にはスフィンゴ脂質とコレステロール 存在するが、ABCA1とABCG1によって輸送さ ールの領域は明らかになっていない。そこで、 子機構と膜脂質ラフト構造の関係を明らかにす た。 成に必須なCERT(ceramide transfer protein) 胞内 SM 量が低下した CHO-K1 細胞由来の その機能回復株 LY-A/CERT 細胞、CERT 過 ABCA 又は ABCG1を発現させ、脂質排出活 細胞のSM 量は、SM 不含有培地で培養すると 細胞のらの ABCA1 による脂質排出活 細胞ならの ABCA1 による脂質排出は 細胞に比べて増加した一方、ABCG1 による脂 した。CHO-K1細胞にCERTを過剰発現、又は いかし細胞 SM 量が増加した条件下では、 脂質排出は減少し、ABCG1による脂質排出は 、ABCA1 又は ABCG1の発現は、ノンラフトの 量を増加させることが分かった。これらの結果

ウシ乳汁に含まれる新規膜小胞-タンパ ク質複合体の調製と特徴づけ F-21 〇村上、耕介'、中谷、肇'、岡島、徹也'、	Siglec-9 によるマクロファージの サイトカイン産生調節 F-23
 「二二」「青木 直人²、灘野 大太¹、松田 幹¹ (1 名大院生命農・応用分子生命科、2 三重大生資) 	ここの 〇屠 文杰、安藤 宗稔、山居 郁子、 西島 謙一、飯島 信司 (名大院・工・生物機能工学)
【目的】近年、マクロファージや樹状細胞などの細胞が、 exosome あるいは microvesicle と呼ばれる膜小胞を分泌す ることが明らかにされた。これらは、リン脂質膜と膜タンパク 質から構成されており、免疫および生体防御において、重 要な機能を担うことが示されている。演者らは、マウス乳腺 上皮細胞株が exosome 様の膜小胞を分泌していること、マ ウス乳汁中に、exosome と密度が類似するタンパク質ーリ ン脂質 食 体 が 存 在 す ることを 明らかにしている [Nakatani H. et al. Biochem J, 2006]。本研究では、十分な 量を調製可能なウシ乳汁を用いて、乳汁中における膜小 胞のタンパク質組成を調べることを目的とした。 【方法】新鮮なウシ乳汁を遠心分離することで、膜小胞画 分を分離し、さらにショ糖密度勾配超遠心分離により分画 した。各 画分に含まれるタンパク質を、乳脂肪球タンパク 質 (分泌膜小胞タンパク質 MFG-E8、および乳脂肪球特 異タンパク質 butyrophilin)に対するモノクローナル抗体を 用いた免疫ブロット法、および質量分析を用いた PMF 法 により解析した。 【結果】免疫ブロット法の結果、MFG-E8 のピーク密度は 1.14 g/ml で、butyrophilin の 1.17 g/ml とは異なっており、 ウシ乳汁には乳脂肪球とは異なる exosome 様膜小胞が含 まれていることが示唆された。また、質量分析を用いた PMF 法より、ラクトフェリン、ラクトフォリン/PP3、MFG-E8 お よび免疫グロブリンといった、生体防御に関連するタンパ ク質が、密度 1.08-1.14 g/ml の画分に検出された。これら の結果から、ウシ乳汁には新規膜小胞ータンパク質複合 体が含まれており、これらが、乳腺および乳児消化管の生 体防御に関与することが示唆された。	【目的】Siglec は主に免疫糸の細胞表面に特異的に発 現しているレクチンで、糖鎖末端に付加されているシア ル酸を認識する。その多くは細胞内ドメインに Immunoreceptor tyrosine-based inhibitory motif(ITIM) と呼ばれる抑制性のチロシンモチーフをもつ。そのチロ シン残基がリン酸化を受けると、チロシンホスファターゼ (SHP-1、SHP-2)がリクルートされ、細胞内へのシグナ ルを調節するとの報告がある。本研究では、主に単球 で発現する Siglec-9 に焦点を当て、初期炎症反応の誘 導に重要な TLR に対してどのように作用するのかを解 析した。 【方法】まず、マウスマクロファージ様細胞株 RAW264 に遺伝子導入し、ヒト Siglec-9 を安定に発現させた細胞 株を樹立し、実験に用いた。TLR2 のリガンドであるペ プチドグリカン(PGN)、および TLR4 のリガンドであるペ プチドグリカン(PGN)、および TLR4 のリガンドであるの プチドグリカン(PGN)、および TLR4 のリガンドであるり ポポリサッカライド(LPS)で細胞を刺激し、分泌される各 種サイトカインの発現量をリアルタイム RT-PCR 及び ELISA で定量した。 【結果】コントロールの細胞株に比べ、Siglec-9 発現株 では TLR の刺激で誘導される各種炎症性サイトカイン (TNF-α、IL-6)の発現が抑制された。また、Siglec-9 の ITIM 部位のチロシン残基をフェニルアラニンに置換し た変異体を発現する細胞株では、Siglec-9 の抑制効果 が見られなかった。さらに、Siglec-9 発現株では、 Siglec-9 と SHP-1、SHP-2 が共沈することが確認され た。以上より、Siglec-9 は ITIM のチロシンモチーフによ り初期炎症反応で分泌されるサイトカインを抑制するこ とが示され、その効果は SHP-1、SHP-2を介する可能性 が考えられた。
	「「「」」」」、エコノビーをプクーに抑制性」
オホムコイト第2トノノンの立体構造板 存性エピトープに対する IgE 結合特性の 解析 〇早坂郁、林幸男、戸川記衣、松原 毅、岡島徹也、灘野大太、松田幹(名大)	
院生命農・応用分子生命科) 【目的】これまでに、鶏卵主要アレルゲンであるオボムコイド(OM)に対する患者血清 IgE 抗体の大部分は、ウズラOM との交差反応性を示さないことが明らかにしてきた。この低交差反応性を利用した解析により、ニワトリOM エピトープは第2ドメインに集中しており、その中でも Asn ⁸⁸ -Pro ⁹³ (D2L2 領域)が優勢なエピトープ領域であることが示唆されている。本研究では、ウズラ OM の第2ドメインを基本として、エピトープの存在が示唆された D2L2 領域のみをニワトリOM に置換したキメラ第2ドメインを複数個直列に連結した組換え抗原(D2L2×n)を調製し、エピトープの位置や密度が IgE 抗体との結合能に及ぼす影響を解析した。 【方法及び結果】大腸菌で発現させ分離精製した各種キメラOM は、トリプシン阻害活性および S-S 結合の位置から立体構造を保持していると推定された。2 系統のマウス(DBA/2、NC/Nga)から得られた OM 特異的 IgE 抗体との反応性をELISA 法により調べた結果、第2ドメインをエピトープとして認識する個体において D2L2×1, 2, 3, 6, 9, 12 との高い反応性が示された。また、RBL-2H3 細胞を用いた脱顆粒誘導能の解析により、D2L2×n について n=6 以上で脱顆粒を誘導する傾向が見られた。これに対し、ウズラOM の D2L2 領域のみをニワトリOM に置換した組換えキメラ抗原については、IgE 抗体との反応性に個体差があり、ほとんど反応しない個体もあった。これらの結果より、このエピトープ領域への IgE 抗体結合には第1ドメインおよ	【目的】ポリコーム群遺伝子は、ショウジョウバエのホメオ ボックス遺伝子群の領域特異的な発現パターンの維持 に重要な遺伝子として同定された。ポリコーム複合体は 主に2種に分類されており、Polycomb repressive complex1(PRC1)とPolycomb repressive complex2 (PRC2)がある。このうちPRC1 複合体に含まれるPc2 は、メチル化ヒストンに結合するクロモドメインを有して おり、PRC2のサブユニット Exh2 によってメチル化され たヒストンH3の27番目のリジン残基(H3K27)に結合す ることができる。本研究はこのPc2と核内レセプターであ るグルココルチコイドレセプター(GR)の相互作用を明ら かにすることを目的としている。 【方法】Pc2とGRの相互作用を明らかにするために、本 研究ではGST-pulldown 法と免役共沈法を用いた。ま た、Pc2 のGR 標的遺伝子への作用を検討するため に、siRNA 法とクロマチン免疫使共沈法を用いた。 【結果】In vivoと in vitro でのGR とPc2 の結合を免疫 沈降法とGST-pull down assay を用いて解析し、この2 つのタンパク質が直接結合することを見出した。また、 ラットの幼若肝細胞においてRNAiによりPc2をノックダ ウンすると、成熟した肝細胞でのみ発現し、GRによって ホルモン依存的に転写が活性化される typtophan oxgenase(TO)遺伝子の発現量が上昇することがわか った。肝細胞において Pc2 の発現量は分化が進むに 従い減少して行くので、GR による分化特異的遺伝子 発現制御に、Pc2 が深く関与していることが示唆され た。これらの結果から、核内受容体がポリコームの新た な標的となり得る可能性が示され、分化特異的に発現 する遺伝子が有する制御メカニズムの解明につながる

日本農芸化学会

2007 年度(平成 19 年度) 関西・中部支部合同大会

御寄贈会社名

本大会の開催に当たり下記4社より御芳志を頂きました。

この場をかりて篤くお礼申し上げます。

株式会社ミツカン グループ本社

アピ株式会社

株式会社 ポッカコーポレーション 愛知県酒造組合連合会

(順序不同)

2007年度日本農芸化学会 関西・中部支部合同大会実行委員会

実行委員長:小林 猛(中部大学 応用生物学部)

- 総務:森山龍一(中部大学応用生物学部)
- 〒487-8501 愛知県春日井市松本町 1200

中部大学応用生物学部

TEL & FAX: 0568-51-6084(総務)

日本農芸化学会中部支部

〒464-8601 名古屋市千種区不老町

名古屋大学大学院生命農学研究科内

支部長:前島正義

庶務幹事:小田裕昭

Tel. 052-789-4124, Fax: 052-789-5050 (庶務幹事)

http://www.agr.nagoya-u.ac.jp/~jsbba/

日本農芸化学会関西支部

〒606-8502 京都市左京区北白川追分町

京都大学大学院生命科学研究科内

支部長:山本憲二

庶務幹事:中川好秋

- TEL: 075-753-6117, FAX: 075-753-6123 (庶務幹事)
- http://jsbba-kansai.kir.jp/